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Abstract: This paper investigates the influence of the effect of viscous dissipation and radiation on natural convection 
heat transfer from vertical flat plate in a non-Darcy porous media saturated with non-Newtonian fluid of variable viscos-
ity. The wall and the ambient medium are maintained at constant but different levels of temperature. The Ostwald–de 
Waele power law model is used to characterize the non-Newtonian fluid behavior. The viscosity of the fluid is assumed to 
follow Reynolds viscosity model. Rosseland approximation is used to describe the radiative heat flux in the energy equa-
tion. The governing equations in their non-similar form are solved numerically by local non-similarity method. The ef-
fects of variable viscosity, viscous dissipation, radiation and the power-law index parameters on the velocity and tempera-
ture profiles as well as on the heat transfer coefficient are analyzed.  
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1. INTRODUCTION 

The study of convection heat transfer from a vertical flat 
plate embedded in a porous medium has attracted many in-
vestigators due to its wide range of applications in geophys-
ics and energy related problems such as thermal insulation, 
enhanced recovery of petroleum resource, geophysical flows, 
polymer processing in packed beds and sensible heat storage 
bed. In particular, a number of industrially important fluids 
including fossil fuels exhibit non-Newtonian fluid behavior. 
Non-Newtonian power law fluids are so widespread in in-
dustrial processes and in the environment that it would be no 
exaggeration to affirm that Newtonian shear flows are the 
exception rather than the rule. Shenoy [1] presented many 
interesting applications of non-Newtonian power law fluids 
with yield stress on convective heat transport in fluid satu-
rated porous media considering geothermal and oil reservoir 
engineering applications. Natural convection of a non-
Newtonian fluid about a vertical wall and that around hori-
zontal cylinder and sphere in a porous medium was pre-
sented by Chen and Chen [2, 3]. Nakayama and Koyama [4] 
analyzed the more general case of free convection over a 
non-isothermal body of arbitrary shape embedded in a po-
rous medium. Mehta and Rao [5, 6] analyzed the buoyancy 
induced flow of non-Newtonian fluids over a non-isothermal 
horizontal plate and a vertical plate with non-uniform heat 
flux embedded in a porous medium using a similarity tech-
nique. Non-Darcy natural, forced and mixed convection heat 
transfer in non-Newtonian power-law fluid saturated porous 
media was studied by Shenoy [7]. 
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Viscous dissipation which, appears as a source term in 
the fluid flow generates appreciable temperature, gives the 
rate at which mechanical energy is converted into heat in a 
viscous fluid per unit volume. This effect is of particular 
significant in natural convection in various devices that are 
subjected to large variation of gravitational force or that op-
erate at high rotational speeds, pointed by Gebhart [8] in his 
study of viscous dissipation on natural convection in fluids. 
Similarity solution for the same problem with exponential 
variation of wall temperature was obtained by Gebhart and 
Mollendor [9]. A comment was made by Fand and Brucker 
[10] that the effect of viscous dissipation might be signifi-
cant in the case of natural convection in porous medium in 
connection with their experimental correlation for the heat 
transfer in external flows. The validity of the comment was 
tested for the Darcy model by Fand et al. [11], both experi-
mentally and analytically while estimating the heat transfer 
coefficient from a horizontal cylinder embedded in a porous 
medium. Their mathematical analysis is confined to studying 
the dissipation effect using a steady, 1-D energy equation, on 
the basis of the equation form analogy given by Bejan [12] 
for the inclusion of viscous dissipation effects. Nakayama 
and Pop [13] considered the effect of viscous dissipation on 
the Darcian free convection over a non-isothermal body of 
arbitrary shape embedded in porous media. The influence of 
viscous dissipation can be seen from the analogy given by 
Tucker and Dessenberger [14] to model the heat transfer and 
fluid flow through the porous media in order to study the 
Resin Transfer Molding (R. T. M) for producing fiber rein-
forced polymeric parts in final shape. Later, Murthy and 
Singh [15] studied viscous dissipation on non-Darcy natural 
convection regime in porous media saturated with Newto-
nian fluid. They concluded that a significant decrease in heat 
transfer is observed with inclusion of viscous dissipation 
effect. Many non-Newtonian liquids are highly viscous such 
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that the irreversible work due to viscous dissipation can, in 
some instances, become quite important which motivated 
researcher to study the viscous dissipation phenomena in 
non-Newtonian fluid saturated porous media. El-Amin [16] 
examined combined effect of MHD and viscous dissipation 
on power law fluids on a plate embedded in the porous me-
dia.  

Depending on the surface properties and solid geometry, 
radiative transport is often comparable with that of the con-
vective heat transfer in many practical applications. Radia-
tion and free convection flow through a porous medium us-
ing Rosseland approximation for the radiative heat flux ana-
lyzed by Raptis [17]. Chamkha [18] studied solar radiation 
assisted free convection in the boundary layer adjacent to a 
vertical flat plate in a uniform porous medium with a more 
general Darcy-Forchheimer-Brinkman flow model. Murthy 
et al. [19] examined the combined radiation and mixed con-
vection from permeable vertical wall in a non-Darcy porous 
media. Whereas, the thermal radiation phenomena of non-
Newtonian fluids over a horizontal plate with variable sur-
face temperature in porous medium was investigated by Mo-
hammadein and El-Amin [20]. 

A lot of heat convection studies in porous media have 
been reported with considering constant physical properties 
of the ambient fluids. However, it is well known that the 
viscosity of liquid changes evidently with the temperature 
and this influences the variation of velocity through the flow. 
Therefore, when we applied to practical heat transfer prob-
lems with the large temperature difference between the sur-
face and the fluid, the considering constant viscosity a con-
siderable errors could occurs. Lai and Kulacki [21] consider 
the variable viscosity effect for a mixed convection flow 
along a vertical embedded in a porous medium. A theoretical 
study of temperature dependent viscosity for the forced con-
vection flow thorough the semi-infinite porous medium 
bounded by an isothermal plate presented by Ling and 
Dybbs [22] with considering viscosity as inverse function of 
temperature. Later, Postelnicu et al. [23] extended their work 
by considering internal heat generation in the medium. The 
problem of variable viscosity on non-Darcy free or mixed 
convection flow on a vertical surface in a non-Newtonian 
fluid saturated porous medium examined by Jayanthi and 
Kumari [24]. Elbashbeshy [25] numerically investigates the 
MHD free convection flow variable viscosity and thermal 
diffusivity along a vertical plate. Flow of a generalized sec-
ond grade non-Newtonian fluid with viscosity varying expo-
nentially with temperature is studied by Massoudi and Phuoc 
[26].  

Even in the absence of the external applied heat the fric-
tional dissipation or viscous dissipation can cause significant 
temperature changes with in the fluid which leads the fluid 
viscosity to vary. The thermal radiation can play a significant 
role in the over all surface heat transfer in situation where 
temperature with in the fluid increases with the frictional 
dissipation. Therefore, the aim of the present investigation is 
to illustrate combined effect of viscous dissipation and radia-
tion on natural convection in non-Darcy porous medium 
saturated with non-Newtonian fluid of variable viscosity. In 
particular we model the viscosity variation by Reynolds law 
[26, 27], which assumes the viscosity decreases exponential 
with temperature. The governing equations are non-

dimensionalized into non-similar form and then solved nu-
merically by local non-similarity method. 

2. MATHEMATICAL FORMULTION 

Consider the steady, laminar, two-dimensional natural 
convection boundary layer flow over a semi-infinite vertical 
flat embedded in a saturated porous medium as shown in 
Fig. (1). The fluid is considered to be gray, absorbing-
emitting radiation but non-scattering medium, and the Rosse-
land approximation is used to describe the radiative heat flux 
in the energy equation. The  x -coordinate is taken along the 
plate and 

 
y -coordinate is measured normal to the plate, 

while the origin of the reference system is taken at the lead-
ing edge of the plate. The porous medium is assumed to be 
transparent and in thermal equilibrium with the fluid. The 
wall and ambient media temperature, respectively, are 
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 (heated plate). The fluid flow is 

moderate and the permeability of the medium is assumed to 
be low so that the Forchheimer flow model is applicable and 
the boundary-drag effect is neglected. The flow is steady, 
laminar and two dimensional. With the usual boundary layer 
and linear Boussinesq approximations, the governing equa-
tions, namely the equation of continuity, the non-Darcy flow 
model (i.e. the model given by Shenoy [7]) and the energy 
equation for the isotropic and homogeneous porous medium 
may be written as:  
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Fig. (1). Physical Model and coordinate system. 
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and the boundary conditions are  

y = 0: v = 0, T = 
 
T

w
           (4)  

 
y !" :  u! 0 , 

 
T !T

"
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In the above equations, u and v are the average velocity 
components along the x and y directions, respectively, and n 
is the power law index (n < 1, n = 1 and n >1, respectively, 
Pseudoplastics, Newtonian and Dilatant fluids).  T  is the 
temperature, !

"
 is the reference density, g is the accelera-

tion due to gravity, !  is the constant thermal diffusivity, 
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T
 

is the coefficient of thermal expansion and 
 
c

p
 is the specific 

heat at constant pressure. Also, b is the empirical constant 
associated with the Forchheimer porous inertia term and µ  
is the consistency index of power law fluid. Following Chris-
topher and Middleman [28] and Dharmadhikari and Kale 
[29], the modified permeability of the flow   K

* of the non-
Newtonian power law fluid is defined as  
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for   n =1 , 
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The radiative heat flux term 
 
q

y

r  is written using Rosse-
land approximation (Raptis [17], Murthy et al. [19]) as  
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where !  and   k*  are the Stefan-Boltzman constant and the 
mean absorption coefficient, respectively. 

The continuity equation is automatically satisfied by de-

fining a stream function 
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The fluid viscosity
 
µ(! )  is assumed to obey Reynolds 

viscosity model ([25, 26])  

  
µ(! ) = µ

"
e
#$!  

where γ is the non-dimensional viscosity parameter depend-
ing on the nature of the fluid and µ

!
 is the ambient viscosity 

of the fluid. This model can be applicable in many processes 
where pre-heating of the fuel is used as a means to enhanced 
heat transfer effect. In addition, for many fluids such as lu-
bricants, polymers, and coal slurries viscous dissipation is 
substantial, an appropriate constitutive relation where viscos-
ity is a function of temperature should be used.  

The above transformation reduces the system of partial 
differential equations into the following system of nonlinear 
ordinary differential equations:  
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and the transformed boundary conditions are  
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permeability for power law fluid. In the present study, this 
parameter is assigned the value 0.1. The viscous dissipation 
parameter is given by 
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Now, integrating Equation (6) one time and taking into 
the boundary conditions (9) we obtained:  
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Substituting equation (10) in the equations (6) and (7), 
we further obtain: 
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The non-dimensional heat transfer coefficient or Nusselt 
number is defined as  
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3. NUMERICAL METHOD 

We now obtain approximate solutions to the equations 
(11-12) with the boundary conditions (8-9) based on the lo-
cal similarity and local non-similarity methods (Minkowycz 
and Sparrow [30]). For the first level of truncation the !  
derivatives in equations (11-12) can be neglected. The gov-
erning equations for the first level of the truncation are: 
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The corresponding boundary conditions are  
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For the second level of truncation, we introduce two aux-
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Thus, the governing equations at the second level are:  
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The introduction of the two new dependent variables G 
and H in the problem requires two additional equations with 
appropriate boundary conditions. These can be obtained by 
differentiating the equations (16) and (17) with respect to !  

and neglecting the terms 
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This generates two auxiliary equations:  
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The corresponding boundary conditions are  

  
! = 0 : G(",!) = 0, H (",!) = 0          (24) 
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4. RESULTS AND DISCUSSION  

The coupled non-linear differential equations (18), (19), 
(22) and (23) along with the boundary conditions (20), (21), 
(24) and (25) are solved using forth order Runge-Kutta 
method with a shooting technique. The integration length !

"
 

varies with the parameter values and it has been suitably 
chosen each time such that the boundary conditions at the 
outer edge of the boundary layer are satisfied. In order to 
assess the accuracy of the solution, the present results for the 
heat transfer coefficients are compared with those obtained 
by Murthy and Singh [15] in case of Newtonian fluid of con-
stant viscosity in absence of dispersion and the comparison 
is given in Table 1, which indicates that the present numeri-
cal results are in good agreement. The following values are 
considered for the parameters:   0.5! n !1.5 , 

 
0 ! " ! 0.5 , 

  0 ! R !1 ,  0.01!" ! 0.1  and   0.01!Gr*!1.0 . The variation 
velocity, temperature and heat transfer coefficient (given by 
equation (13)) are shown for some selected values of the 
parameters through figures. 

Non-dimensional velocity in the non-Darcy medium is 
plotted for fixed value of   Gr

* , γ and R for various values of 
power law index n and viscous dissipation parameter !  in 
Fig. (2). It is interesting to note that the value of the slip ve-
locity 

 
!f  increases with the power law index n. And at the 

same time, an increase in the value of the dissipation pa-
rameter increases the velocity distribution inside the bound-
ary layer. In Figs. (3a and 3b). the non-dimensional velocity 
profiles are plotted in the non-Darcy medium for   n = 0.5  
(pseudoplastic fluid) and   n =1.5  (dilatant fluid), respec-
tively with fixed value of   Gr

*  and !  for various values of γ 
and R. It is observed that for all n (

  
n <1, n =1and n >1 ) the 

velocity increases inside the boundary layer as the viscosity 
parameter increases and, therefore, decreases the boundary 
layer thickness, which results in decrease in temperature as 

Table 1. Comparison of the Heat Transfer Coefficient 
 
- !" (0)  for Newtonian Fluid when 

  
R = ! = 0  

  Gr
*
=G =1  Murthy and Singh (Series solution) Present results (LNS method) 

 
! = 0.0  0.3658 0.3658 

 
! = 0.01  0.3619 0.3619 

 
! = 0.1  0.3261 0.3262 
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indicate in the Figs. (5a and 5b). Also a raise in the value of 
the radiation parameter results in a rise in the velocity distri-
bution inside the boundary layer for all vales of the power 
law index n. 

The variation of non-dimensional temperature distribu-
tion !  with the similarity variable !  for two different values 
of n and !  is plotted in Fig. (4). The temperature profile 
rises with increasing values of the dissipation parameter for 
all n. In other hand the thickness of the temperature bound-
ary layer decreases with increasing the power law index n 

which results in an increase in the heat transfer coefficient 
with increasing the power law index n as indicated in the 
Figs. (6-9). Figs. (5a and 5b), respectively, show the varia-
tion of the non-dimensional temperature profile !  across the 
boundary layer for n = 0.5 and n = 1.5 various values of vis-
cosity parameter γ and R for fixed values of other parame-
ters. It is seen that increasing the viscosity parameter γ tends 
to decreases the thermal boundary layer thickness results 
increment in heat transfer coefficient as shown in the Figs. (6 
and 9). Again with an increase in the coefficient of thermal 
radiation R, a rise in temperature distribution in the boundary 
layer is seen for all values of n. 

 
Fig. (2). Variation of velocity distribution with !  varying  n  and 

!  fixing   Gr
*
= 0.01 , 

 
! = 0.0 and 

  R = 0.0 . 

 

 
Fig. (3). (a) Variation of velocity distribution with !  for 

  n = 0.5  

varying !  and  R  fixing   Gr
*
= 0.01  and 

 ! = 0.01 . (3b). Variation 
of velocity distribution with !  for 

  n =1.5  varying ! and  R  fixing 

  Gr
*
= 0.01  and 

 ! = 0.01 . 

 
Fig. (4). Variation of temperature distribution with !  varying  n  

and !  fixing   Gr
*
= 0.01 , 

 
! = 0.0 and 

  R = 0.0 . 

 

 
Fig. (5). (a) Variation of temperature distribution with !  for 

  n = 0.5  varying ! and  R  fixing   Gr
*
= 0.01  and 

 ! = 0.01 . (5b). 
Variation of temperature distribution with !  for 

  n =1.5  varying 

! and  R  fixing   Gr
*
= 0.01  and 

 ! = 0.01 . 
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Fig. (6) illustrates the variation of the Nusselt number 
against  n  for different values of !  and ! , with fixed value 
of other parameters. It is observed that the heat transfer coef-
ficient increases with increasing power law index  n  and 
viscosity parameter ! . Similar behavior was observed by 
Jayanthi and Kumari [24], considering viscosity of liquid 
varies inversely as a linear function of temperature. On the 
other hand heat transfer coefficient decreases with increasing 
the dissipation parameter !  for all values of n. It is also 
pointed out by Murthy and Singh [15] while studying vis-
cous dissipation of natural convection for Newtonian fluid. 
The rise in the heat transfer coefficient due to the presence of 
!  is more pronounced for the pseudoplastic fluids while the 
fall in the heat transfer coefficient due to increasing !  is 
more for the dilatant fluids. In Fig. (7) the variation of heat 
transfer coefficient as a function of the power law index n is 
plotted for different values of   Gr *  and !  with fixed values 
of other parameters. The heat transfer coefficient decreases 
with increasing   Gr *  and !  for all  n . The influence of non-
Darcy parameter is more important for dilatant fluids. It is 
also noted that the effect dissipation on heat transfer coeffi-
cient is diminishing with increasing non-Darcy effect for all 
values of  n , more significantly if the porous media is satu-
rating with dilatant fluids. 

The variation of non-dimensional heat transfer coeffi-
cient with the power law index  n  for two different values of 
!  and  R  is plotted in Fig. (8). It is noted that for the dilatant 

fluid saturated porous media, thermal radiation has more 
significant effect along with the viscous dissipation parame-
ter on the heat transfer coefficient. In Fig. (9) variation of the 
Nusselt number as a function of power law index n is shown 
for two different values of !  and  R  with fixed value of 
  Gr *  and ! . From this figure, a raise in the Nusselt number 
is evident with increasing values of n, !  and the thermal 
radiation  R . Also an important observation is that the raise 
in the heat transfer coefficient due to increase in the viscosity 
parameter is more significant when considered along with 
thermal radiation. 

5. CONCLUSIONS  

In this study the problem of combined effect of viscous 
dissipation and radiation on natural convection heat transfer 
from vertical flat plate in a non-Newtonian fluid saturated 
non-Darcy porous medium with variable viscosity is ana-
lyzed. It is noted that the velocity and temperature profiles as 
well as the heat transfer coefficient are significantly affected 
by the viscous dissipation, radiation of the medium and vis-
cosity of fluid. It is seen that the heat transfer coefficient 
increases with increasing in the power law index  n  and vis-
cosity parameter !  while it decreases with the dissipation 
parameter ! . The rise in the heat transfer coefficient due to 
the effect of !  is more pronounced for the pseudoplastic 
(  n <1 ) fluids and especially in company with thermal radia-
tion while the fall in the heat transfer coefficient due to in-
creases !  is more when the porous media saturated with 

 
Fig. (6). Variation of Nusselt number with  n  varying ! and !  

fixing   Gr
*
= 0.1  and   R = 0 . 

 

Fig. (7). Variation of Nusselt number with  n  varying   Gr
* and !  

fixing 
 
! = 0.0  and   R = 0 . 

 

Fig. (8). Variation of Nusselt number with  n  varying  R and !  
fixing   Gr

*
= 0.1  and 

 
! = 0 . 

 
Fig. (9). Variation of Nusselt number with  n  varying  R and !  

fixing   Gr
*
= 0.1  and ! =0. 
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dilatant (  n >1 ) fluids. Finally, the presence of thermal radia-
tion influences the effect of viscous dissipation parameter on 
the heat transfer coefficient for any fluids (Newtonian or 
non-Newtonian fluid) and more affective when the porous 
media is saturated with dilatant fluids.  

NOMENCLATURE 

 b  = Coefficient in the Forchheimer term 

 c  = Forchheimer coefficient 

 
c

p
 = Specific heat at constant pressure [J / kg K] 

 
C

T
 = Temperature ratio 

 d  = Pore diameter [ m ]  

 
f   = Dimensionless stream function 

 
g  = Acceleration due to gravity [ m/s

2 ] 

  Gr *  = Inertia Parameter based on permeability for 
power law fluid 

  k *  = Mean absorption coefficient  

  K *  = Intrinsic permeability of the porous me-
dium for flow of power law fluid [ m2 ] 

 K  = Permeability of the porous medium [ m2 ] 

 n  = Power law index 

 Nu  = Nusselt number 

 
q

y

r  = Radiative heat flux [J/( m2 s)] 

 R  = Radiation parameter  

 
Ra

x
 = Local Rayleigh number 

 T  = Temperature [ K ] 

  
u,v  = Average velocity components in x and y 

directions [ m/s ] 

  
x, y  = Coordinates along and perpendicular to the 

wall [ m ] 

Greek Symbols 

!  = Thermal diffusivity [ m
2
/s ] 

 
!

T
 = Coefficient of thermal expansion [ 1/K ] 

!  = Dissipation parameter 

!  = Porosity of the saturated porous medium 

!  = Viscosity parameter 

!  = Similarity variable 

µ  = Fluid consistency of the inelastic non-
Newtonian power-law fluid [

 
kg/(ms) ] 

!  = Dimensionless temperature 

!  = Density [
 
kg/m3 ] 

!  = Stefan-Boltzman constant 

!  = Dimensionless stream function  

 
!

w
=T

w
"T

#
 

Subscripts 

 w  = Condition at the wall  

!  = Condition at the ambient medium 
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