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Abstract: An asymptotic expansion for inverse moments of positive binomial and Poisson distributions is derived. The 

expansion coefficients of the asymptotic series are given by the positive central moments of the distribution. Compared to 

previous results, a single expansion formula covers all (also non-integer) inverse moments. In addition, the approach can 

be generalized to other positive distributions.  

1. INTRODUCTION  

 Inverse moments of probability distributions can arise in 
several contexts. In particular, they are relevant in various 
statistical applications, see e.g., Refs. [1-3], and references 
therein. Recently it has been shown in Ref. [4] that the first 
two inverse moments of positive binomial distribution are 
needed for the calculation of the running time of a particular 
quantum adiabatic algorithm solving 3-SAT problem. 
Because closed expressions are usually not possible it is of 
interest to derive asymptotic expansions. In the present paper 
we are going to derive an asymptotic expansion for inverse 
moments of arbitrary power, extending the results of recent 
works [3, 5, 6].  

 Specifically, we are going to study the inverse moments 
of positive binomial and Poisson distributions. For binomial 
distribution probability distribution P(x = i) is,  

P( x= i) = 
1

1 qn i
n( ) p

i
q

n-i
,     i = 1,…,n  (1)  

with q =1 p, the r-th inverse moment is given by  

fr(n) = (1 - q
n
)E(1/x

r
)= piqn 1 1

iri=1

n

. (2)  

 Similarly, for Poisson distribution the r-th inverse 
moment gr is  

gr = e m m
s

s!s=1

1

sr
. (3)  

We are going to derive an asymptotic expansion of fr(n) and 
gr in terms of inverse powers of (np + q) or (m + 1) for 
binomial and Poisson distribution, respectively. The 
expansions work for arbitrary real and positive r. We will 
also generalize the result to arbitrary positive distributions. 
The expansion coefficients are given by the central moments 
of the distribution in question which is intuitively an 
appealing result. Namely, for sufficiently sharp distribution  
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(i.e., when higher cumulants are small) the inverse moment 
will be approximately given by the inverse of the average 
value, i.e. E (1/x

r
)  1/ E (x)

r
. If the distribution is non-zero 

at a single point, then this result is exact. Higher orders in the 
asymptotic expansion should therefore “measure” how much 
the distribution in question differs from a point distribution, 
P(x = i)= i ,E(x). This is the reason why it is natural that the 
expansion is given in terms of central moments. But let us 
first briefly review known results about inverse moments. 
The problem of calculating the inverse moments of positive 
distributions, e.g. fr(n) or gr, has a rather long history. 
Already in 1945 Stephan [7] studied the first and second 
inverse moment for binomial distribution. Grab and Savage 
[1] calculated tables of reciprocals for binomial and Poisson 
distributions as well as derive a recurrence relation. They 
also derived an exact expression for the first inverse moment 
for a Poisson distribution involving an exponential integral. 
In Ref. [8] an approximating formula for binomial 
distribution in terms of inverse powers of (np) has been used. 
In Ref. [9] a recursive formula for inverse moments of 
binomial distribution has been obtained. The recurrence 
formula though is rather complicated as it involves recursion 
in n as well as in the power of the moment r. Asymptotic 
expansions have also been studied. Such expansions are of 
value also because the formal definitions of fr(n) (2) or gr (3) 
are not simple to evaluate for large values of np or m. One 
has to sum many terms, each being a product of a very small 
and a very large number, all together resulting in a small 
inverse moment. Tiku [10] derived an asymptotic expansion 
of gr using Laguerre polynomials. Chao and Strawderman 
[11] considered slightly different inverse moments defined 
as E(1/(x + a)

r
) which are frequently easier to calculate. 

Simple expression for integer a  1 and r = 1 are derived. 
Kabe [12] derived a general series with the expansion 
coefficients given by positive factorial moments μ

[i] 
= E 

(x!/(x  i)!) of the distribution. He also derived a general 
formula  

E
1

(x + a)r
=

1

(r)
yr 1e ayM ( y)dy

0
 (4)  

where M(t) is a moment generating function, M(t) = E(e
tx
)= 

μ j
'

j=0
t j / j!  with μ j

'
= E(x

j
). For further discussion of 
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negative moments and generating functions see also Ref. 
[13]. Various other identities involving generating functions 
are derived in Refs. [14]. Equation (4) will serve as a starting 
point for our derivation. Quite recently the asymptotic 
expansions of the first inverse moment for binomial 
distribution have been considered in Refs. [5] and [6]. In 
Ref. [5] an expansion in terms of Euler polynomials is given 

while in Ref. [6] a more elegant expansion in terms of 

inverses of n
[j]

= n!/(n j)! is presented. In both works only 

the expansion of the first moment is given. Ref. [3] provided 

a general method using Stirling numbers to derive the 

asymptotic expansion for Poisson distribution for an 

arbitrary real power r. The expansion though gets more 

complicated for larger r.  

 In the present work we are going to systematically derive 
a general asymptotic expansions of fr(n) and gr for an 
arbitrary real power r. What is more, the expansion for an 
arbitrary r will be given by a single simple formula. The 
paper is organized as follows. In section 2 we derive 
asymptotic expansion for binomial distribution. In section 3 
a similar result is derived for Poisson distribution. Finally, in 
section 4 the method is generalized to arbitrary positive 
distributions.  

2. ASYMPTOTIC EXPANSION FOR BINOMIAL 
DISTRIBUTION  

 Note that for integer r the inverse moment fr(n) can be 
formally written in terms of a generalized hypergeometric 
function [15],  

f1(n) = npq
n 1

2F3
1,1,1 n

2,2
;

p

q

f2 (n) = npq
n 1

3F4
1,1,1,1 n

2,2,2
;

p

q
,

 (5)  

and analogously for larger r’s. Although exact, these 
expressions are not very illuminating. In fact, using a series 
expansion for hypergeometric function one can see that the 
corresponding series is nothing but the sum occurring in the 
average for fr(n) (2).  

 Our approach will be different. First we write fr(n) as an 

integral. Using identity u pe ru du =
(p +1)!

r p+10
,with (p + 

1) = p! for integer p, and binomial expansion of (q + pe
-u
)
n
 

we quickly see that fr(n) (2) is given by  

fr (n) =
1

(r)
ur 1[(q + pe u )n 1]du

0
. (6)  

 This is nothing but a special case of equation (4). 
Integrating once per parts we get 

fr (n) =
np

(r +1)
ure u[(q + pe u )n 1 du

0
 . (7)  

  The last equation will serve as a starting point for the 
asymptotic expansion. Before proceeding though, let us 
show few facts about central moments.  

 Let M(t) be generating function of probability 
distribution,  

M (t) = μk
'

k=0

t k

k!
= E(e

tx
), (8)  

where μk
'
: = E (x

k
) is k-th moment about the origin. Then the 

generating function F(t) of central moments, i.e.  

F(t) = μk
k=0

t k

k!
,     μk : = E ((x - x )

k
); (9)  

with x  = E(x) being the mean, is given by  

F(t) = 
  
etx

M (t).  (10)  

 In the special case of binomial distribution the generating 
function of central moments is  

Fn(t)=(qe
-tp

 + pe
tq

)
n
, (11)  

where central moments are
1
, 

μk (n) =
n
ii=0

n

pi (1 p)n i (i np)k . (12)  

 The first few central moments of binomial distribution 
are readily calculated and are  

0(n)=1, 1(n)=0, 2(n)=np(1 p), 3(n)=np(1 p)(1 2p),  

4(n)=np(1 p)(1 6p+6p
2
+3np 3np

2
). 

(13)
  

 Higher moments can be calculated using the following 
Lemma.  

Lemma 1. For central moments of binomial distribution 

k(n) (12) the following recursive relation holds:  

k+1(n)=p(1 p)
dμk (n)

dp
+ nkμk 1(n) , (14)  

where k(n) is considered as a function of p only (q is 
replaced by 1 p).  

Proof. The relation is derived by differentiating definition of 

k(n) (12) with respect to p. Using identity  

n
ii=0

n

piqn ii(i np)k = μk+1(n)+ npμk (n) , (15)  

obtained by writing k+1(n)=
n
ii=0

n
p

i
q

n i
(i np)

k
(i np), 

one obtains the recursive relation (14).  

Corollary 1. Using Lemma 1 we can show that  

1. k(n) is polynomial of order k in p  

2. k(n) is polynomial of order k

2
 in n  

3. Leading order in n of 2k(n) is 2k(n) = (2k 1)!!(pqn)
k 

+ 
O(n

k 1
).  

1

Note that in the definition of k(n) the sum runs over i=0,...,n, that is 

including i=0. This term is, for instance, excluded in the definition of fr(n) 

(2).  
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Proof. Using induction and the recursive relation (14), 

together with the initial condition 1(n) = 0 and 2(n)= np(1 

p), we can see that the order of polynomial k(n) in p is 

indeed k. Similarly, the order in n of k+1(n) is by 1 larger 

than that of k 1(n), therefore k(n) O ( n
k

2 ). Specifically, 

one can see that the leading order in 2k(n) is 2k(n)  

(pq)
k
(2k 1)!!n

k
. 

 Now we are ready to give the asymptotic expansion of 

fr(n) (2).  

Theorem 1. For any real r > 0 the inverse moment fr(n) (2) 

is given by the asymptotic expansion  

 

fr (n) =
np

(np + q)r+1
( 1)k

μk (n 1)

(np + q)k
r + k
r

+O (1 / n
m

2 )
k=0

m 1

.   (16)  

The terms k(n 1)/(np+q)
k 

are of order O(1/ n
m

2 ), where x  

is the smallest integer larger than x. For non-integer r’s the 

binomial symbol is understood as 
r+k
r =(r+1)(r+2) ··· 

(r+k)/k!.  

Proof. Writing (q+pe
u
)

n 1 
= e

-up(n-1)
(qe

up
+pe

-uq
)
n-1

 in integral 
equation for fr(n) (7), changing the integration variable to y = 

u(np+q), we get  

 

fr (n) =
np

r!(np + q)r+1
yre yFn 1

y

np + q0
dy .  (17)  

 Using expansion of Fn(y) (11) in terms of central 

moments we get after integration the result (16). From 

Corollary 1 it follows that k(n 1) is of the order O( n
k

2 )

and so the k-th term in the expansion is k(n 1)/(np+q)
k 

~ 

O(1/ n
k

2 ) showing that the expansion is indeed asymptotic 

in n.  

 It is instructive to explicitly write out fr(n) (16) using the 

first few lowest terms. We have  

fr (n) =
np

(np + q)r+1
(1+ (r + 2)(r +1)(n 1)pq

2(np + q)2
1{

(r + 3)(q p)

3(np + q)
+
(r + 4)(r + 3)(1 6pq + 3npq)

12(np + q)2
+ ...}).

 (18)  

 Because in literature expansions in terms of the inverse 

powers of np are frequently given, instead of (np+q) as here, 

we will write expansion in terms of (np), obtained from (18) 

by using 1/(1+u)
k  ( u) j

k 1+ j

k 1j=0
.  

Corollary 2. fr(n) expanded in terms of inverse powers of 
(np) is  

fr (n) =
1

(np)r
1+

r(r +1)q

2(np)
+
r(r +1)(r + 2)q(4 + q + 3rq)

24(np)2
+ ... . (19) 

Specifically, for lowest three integer r’s we have  

f1(n) =
1

np
1+

q

(np)
+
q(1+ q)

(np)2
+
q(1+ 4q + q2 )

(np)3
+

+
q(1+ q)(1+10q + q2 )

(np)4
+
q(1+ 26q + 66q2 + 26q3 + q4

(np)5
+ ...

 (20) 

f2 (n) =
1

(np)2
1+

3q

(np)
+
q(4 + 7q)

(np)2
+
5q(1+ 6q + 3q2 )

(np)3
+

+
q(61+ 91q +146q2 + 31q3

(np)4
+ ...

 (21)  

f3(n) =
1

(np)3
1+

6q

(np)
+
5q(2 + 5q)

(np)2
+
15q(1+ 8q + 6q2 )

(np)3
+

+
7q(3+ 58q +128q2 + 43q3

(np)4
+ ... .

  (22)  

3. ASYMPTOTIC EXPANSION FOR POISSON 
DISTRIBUTION  

 For Poisson distribution the whole approach is very 
similar to the one for binomial distribution so we will state 
the main Theorem right away.  

Theorem 2. For any real r > 0 the inverse moment gr of 
Poisson distribution (3) is given by the asymptotic expansion  

 

gr =
m

(m +1)r+1
( 1)k

μk

(m +1)k
r + k
r

+O (1 /m
p

2 )
k=0

p 1

, (23) 

where k are central moments of Poisson distribution,  

μk = e m m
s

s!k=0

(s m)k . (24)  

Proof. The proof essentially goes along the same steps as the 
one for Theorem 1. First note that Eq. 7 can be for any 
distribution written as  

(1-P(x=0))E(1/x
r
)= P(x = s)

1

sr
=

1

(r +1)s=1

ur
0

dM ( u)

du
du , (25)  

where M(u) is a generating function of the distribution, e.g., 

it is M(u)=(q+pe
u
)

n 
for binomial and M(u)=e

m(eu
 

1) 
for Poisson 

distribution. Now we try to write the derivative of generating 

function in terms of generating function of the central 

moments F(u). For arbitrary distribution F(u) is given by 

F(u)=e
uE(x)

M(u). The “trick” is now to write dM/du as 

a(u)F(u), with some distribution dependent a(u). We can see 

that a(u) must be given by logarithmic derivative of the 

generating function, a(u)=e
uE(x) d

du
(log M(u)). Using a(u), 

the inverse moment is  

(1-P(x=0))E(1/x
r
)=

1

(r +1)
ura

0
( u)F( u)du.  (26)  

 For Poisson distribution we have a(u)=me
u(m+1)

, from 

which by substitution of variables y=(m+1)u an expansion 

parameter (m+1) is obtained. Furthermore, after writing 

series expansion for F( u) the resulting integrals 

ype y

0
dy are easily evaluated, giving the final result (23).  

 From the proof we see that the asymptotic expansion 

works for distributions having simple a(u) (e.g. exponential), 

so that integrals u p

0
a(u)du  can be analytically evaluated. 
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Central moments of Poisson distribution can be calculated 

using the following recursive relation.  

Lemma 2. Central moments of Poisson distribution are 
given by the recursive formula  

μk+1 = m
dμk

dm
+ kμk 1 , (27)  

with the first few being  

0=1,     1=0,     2=m,     3=m,     4=m+3m
2
.
 

(28)  

Proof. The proof goes along the same line as the one for 
Lemma 1.  

 Using Lemma 2 and Theorem 2 we can calculate first 
few terms in the expansion of gr.  

Corollary 3. First few term in the expansion of gr in inverse 
powers of m are  

 

gr =
1

mr 1+
r(r +1)

2m
+
r(10 + 21r +14r2 + 3r3

24m2 +O (1 / m3 ) .  (29)  

4. GENERAL POSITIVE DISTRIBUTIONS  

 Already in proof of Theorem 2 we saw that the 
asymptotic expansion can be derived for general 
distributions. Here we state the Theorem.  

Theorem 3. Let M(x) be generating function of positive 

moments (about origin) for an arbitrary distribution and let 

k denote its central moments. That is, if x =E(x) then 

k=E((x x )
k
). If we denote by (u) the log moment 

generating function, (u) = log M(u), i.e., the generating 

function of cumulants, then the asymptotic expansion of 

inverse moments is in general given by  

P(x = s)
1

srs=1

=
1

x
r

( 1)k μk

k!

1

x
k yr+ke y '( y / x

0
k=0

)dy .  (30) 

The above series must be understood as an asymptotic 

expansion in 1/ x .  

Proof. The proof goes along the same line as the one for 
Theorem 2. One can start with equation (26) and after 
changing the integration variable to y= xu  one arrives at 
equation (30).  

 Note that expansion (30) works exactly when the 

asymptotic expansion makes sense, that is when e.g. the first 

inverse moment is given in the leading order by the inverse 

of the expectation value, 1/ x . This happens when higher 

central moments grow with the mean x  sufficiently slowly, 

i.e., slower than x k , see also discussion in Ref. [16]. In the 

case of binomial and Poisson distributions one has k x
k

2 , 

ensuring asymptoticity of the expansion.  
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