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Abstract: ACRM, a two-layer homogeneous canopy reflectance model is applied for the estimation of leaf area index 

(LAI) of forests using Proba/CHRIS spectral signatures and model inversion. A regularity parameter is used in the model 

in order to account for the grouping of foliage into tree crowns. Results of LAI estimation at the Järvselja forested test 

site, in Estonia, are compared with ground truth readings available at the test site, and with LAI estimates by MODIS and 

MERIS/CYCLOPES LAI products for the test site. MODIS LAI estimates are systematically higher than MERIS 

estimates. The estimated LAI values from ACRM inversion using CHRIS data have wider range than MODIS and MERIS 

estimates for the test site because of smaller pixel size. In general, LAI values from CHRIS data are between MODIS and 

MERIS LAI values, however, systematically lower than allometric LAI of forest stands using forest inventory data and 

regressions suggested for the boreal zone in literature.  
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1. INTRODUCTION 

Among many vegetation characteristics, leaf area index 
(LAI) is of prime importance. It controls light interception 
and relevant processes such as photosynthesis, energy 
balance, carbon fluxes, and water balance. Direct 
measurement of LAI by measuring the area of all leaves in a 
forest and/or landscape is unthinkable. Even optical ground 
measurements (LAI-2000, hemispherical photos) are too 
labor-intensive for the estimation of LAI for large areas as 
they can provide only point estimates of LAI. Optical 
methods provide biased estimates of LAI which can be 
corrected by regression formulae, however, this relationship 
is nonlinear and regression parameters depend on the stand 
structure [1]. Allometric regressions can be applied only for 
forests for which forest mensuration data are available and 
up to date. Even then, allometric regressions can not account 
for all site characteristics such as site fertility, stand density, 
previous management actions, etc. The convenient operatio-
nal possibility to estimate LAI of forests and/or landscape is 
using aerial or satellite measurements. The observations with 
instruments like MODIS and MERIS are used for producing 
land cover products including LAI [2, 3]. The MERIS LAI 
product is carried out using CYCLOPES procedure [4]. Such 
procedures have been developed and validated for years, 
however, due to the complexity of the problem, recent 
comparisons of MODIS and CYCLOPES LAI products by 
Fang et al. [5] concluded that the uncertainties in LAI 
products are still around  1.0 LAI units. 
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Alternative methods of LAI estimation using multiple 
sources, multiple view directions, airborne lidar data etc are 
under development [6-11]. The increasing number of 
satellite information and increasing spatial resolution of 
satellite sensors encourage to develop new computationally 
effective methods of LAI estimation. 

In a paper by Kuusk [12] a homogeneous canopy 

reflectance (CR) model was used for the estimation of 

landscape LAI by inversion using Landsat TM spectral 

signatures in shortwave bands TM2--TM5 and TM7. A 

newer version of the same CR model [13] was used by Liu et 

al. [14] for the LAI estimation at six study sites using 

MODIS, CYCLOPES, and MISR reflectance data. The study 

sites included cropland, grassland, and a forest site of 

deciduous trees in Germany. This study was oriented 

towards the development of methods for building global LAI 

products. 

The comparison of estimated LAI map with land use map 

in Kuusk [12] shows that the estimation of forest LAI by the 

inversion of a homogeneous CR model fails. The LAI of 

forests was obviously underestimated, especially that of 

conifer forests. In the Landsat scene forests are darker than 

grasslands and green field crops in all spectral bands. The 

comparison of CR simulations by a forest CR model and 

homogeneous model in Kuusk et al. [15] shows that the 

aggregation of foliage into tree crowns makes the scene 

darker. The grouping of foliage into tall tree crowns 

increases the amount of visible shadows in a scene. This is 

the reason of bias in LAI estimation in forests by the 

inversion of homogeneous CR models which do not account 

for this characteristic structure of a forest canopy. 
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Houborg et al. [16] suggested a simple, but very ad hoc 
scheme, how to use the two-layer homogeneous CR model 
ACRM by Kuusk [13] for the estimation of forest parameters 
by the inversion of the model. Instead of analyzing why the 
model fails over forests the measured forest spectral 
reflectance was corrected by an empirical factor derived 
using differences of the normalized difference vegetation 
index (NDVI) over crop fields and forests. 

Several forest reflectance models have been developed 
which can be inverted using CR spectra [17]. Such models 
have a long list of input parameters. This makes the 
estimation of forest LAI by the inversion of such models 
problematic. Numerous free parameters create high degree of 
freedom in the model inversion. Typically, there is not 
sufficient information available for estimating simultan-
eously all these parameters by the inversion of a forest 
reflectance model, and various combinations of model input 
parameter values may provide equal fit of simulated and 
recorded spectral signatures. Inversion of such a model is a 
typical ill-posed problem, which can be solved only by 
fixing several model parameters to expert values [18]. Only a 
few parameters can be left free in inversions. Unfortunately, 
errors in fixed parameter values result in biased LAI 
estimates in the inversion of a forest reflectance model. 

In the present work a new attempt is made to estimate 
forest LAI by the inversion of a few-parameter homogeneous 
CR model. In the two-layer homogeneous model ACRM the 
regularity of foliage pattern in forests caused by grouping 
foliage into tree crowns is accounted for by a 
clumping/regularity parameter. A procedure is defined for 
estimating the LAI of hemiboreal forests at a sub-satellite 
test site in Estonia by the inversion of the model using 
medium resolution CHRIS/Proba (17 m) and Hyperion (30 
m) spectral signatures. Inversion results are compared to 
MODIS and MERIS land products, and to ground truth 
measurements at several test plots in the test site. 

2. DATA 

Forest data have been collected at the Järvselja Training 

and Experimental Forestry District (Estonia, 58.30 N, 

27.26 E). The Forestry District has served as a test site for 

the CHRIS/PROBA mission [19] and VALERI effort [20]. 

Järvselja forests, located on a flat landscape at 50 m above 

sea level, are representative of the hemi-boreal zone. Stands 

are pure or mixed and composed mainly of silver birch  

(Betula pendula), Scots pine (Pinus sylvestris), Norway 

spruce (Picea abies), common alder (Alnus glutinosa), aspen 

(Populus tremula), white alder (Alnus incana), small-leaved 

lime (Tilia cordata). Growth conditions range from poor 

where the site index  (stand height at the stand age of 

100 years) is less than 10 m to very good where  can be 

over 35 m. A more detailed description of the test site is 

provided by Kuusk et al. [21]. Forest stands in Järvselja are 

inventoried every ten years. The stand maps and description 

data base are compiled. The GIS database from year 2011 

forest inventory contains several forest parameters such as  

 

 

species composition, age, diameter at breast-height, tree 

height, site type, etc for each stand. A forest stand is defined 

as a geographically unified area which has a relatively 

uniform species composition and is managed as a single unit. 

Three mature stands at the test site have been studied in 

detail previously, and the database of the forest structure and 

optical properties that is intended for forest radiative transfer 

modeling experiments, referred to as the Järvselja data-base, 

is built by Kuusk et al. [22-24]. Allometric LAI of tree 

canopy was calculated using specific leaf weight (SLW) 

from literature [25] and leaf mass regressions by Repola [26, 

27] which link the tree layer LAI to tree height  and 

diameter at breast-height , 

, where N is the number of trees per square meter and 

 is leaf mass per tree. Dependent on the 

dominant stand species, seven different regression formulae 

for foliage mass are in use [23]. 

There are several smaller test plots at Järvselja which are 
used in various forestry studies. Leaf area index 
measurements with LAI-2000 plant canopy analyzer, and 
estimates using hemispherical photos and CAN_EYE 
software [28] at 42 elementary sampling units of the 
VALERI project carried out in 2009 are involved in the 
present study. 

A successful CHRIS Mode 3 [19] acquisition of the test 

site was on July 5, 2010. CHRIS acquisition was supported 

by simultaneous spectroscopic measurements of atmosphere 

transparency, incident spectral radiation, and airborne 

measurements of top-of-canopy forest reflectance spectra. 

Two-stage atmospheric correction of CHRIS images for the 

conversion of satellite signals to the top-of-canopy 

reflectance factor was carried out as described in Kuusk et al. 

[29]. In the first stage the look-up-table (LUT) of satellite 

signal in CHRIS spectral bands was calculated using the 

atmospheric radiative transfer model 6S by Vermote et al. 

[30] and values of optical properties of the atmosphere from 

the spectral irradiance and sun-photometer measurements 

during acquisition. In the second stage the adjacency 

correction was performed by the spacial filtering of the 2D 

Fourier spectra of the spectral images of the test site. 

Significant part of the CHRIS scene of July 5, 2010 is 
also covered by the Hyperion scene of August 18, 2005. 
Hyperion is a hyperspectral imager on board the earth 
observing satellite EO-1 [31]. 21 spectral bands suggested by 
Huang et al. [32] were used in this research. 

MODIS Collection 5 LAI data [33] for the CHRIS 
acquisition date are available on-line [2]. MODIS LAI maps 
have 1 km  km pixels. 

MERIS LAI product is using the CYCLOPES algorithms 
[4]. LAI data for the test site is provided by the Geoland2 
project, a Collaborative Project (2008-2012) funded by the 
European Union under the 7th Framework Programme [3]. 
The LAI product is available since 2011, data for July and 
August 2011 were used in this study. MERIS LAI maps have 
300 m  m pixels. 
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2.1. Forestry Data and Image Classification 

The forestry data base was used for distinguishing 
between spruce, pine, and broadleaf stands, and grass. The 
stands younger than 5 years and open areas were considered 
grasslands. A stand was considered a spruce stand if the 
main species was spruce and there was less than 50% of 
broadleaf trees in the stand. Similar conditions were applied 
for pine stands. The rest of forests were considered broadleaf 
stands. These data are available only for stands registered in 
the forestry data base. Such stands cover 27% of the CHRIS 
scene CD78 of July 5, 2010 -- close to nadir scene. In order 
to distinguish between forest types and non-forest area in the 
whole scene, the scene was classified into 96 classes using 
16 CHRIS spectral images. The non-supervised 
classification in the GRASS GIS [34] was used. Spectral 
bands 1 (blue) and 18 (992-1036 nm) which have the highest 
noise level were not used. Probabilities to fall into any class 
of spruce, pine or broadleaf stand were analyzed using the 
forestry data base. 

3. INVERSION OF THE CANOPY REFLECTANCE 
MODEL 

3.1. Clumping and Regularity of Foliage 

The homogeneous CR model ACRM has no detailed 

description of the canopy structure. The only structure 

parameters are LAI, leaf angle distribution (LAD) described 

by the two-parameter elliptical distribution [35], the Ross-

Nilson geometry function  -- the projection of unit leaf 

area in the direction , and the foliage clumping parameter 

. Single scattering canopy reflectance is controlled along 

with foliage and soil optical properties by the bidirectional 

gap fraction  in Sun and view directions,  

 (1) 

 Here  is the gap fraction at zenith angle , and 

 is the hot spot factor which accounts for the 

statistical dependence of gap probabilities in Sun and view 

directions [36]. 

The clumping of foliage changes the gap probability (and 

bidirectional gap probability) in a canopy. Foliage clumping 

modifies the Ross-Nilson geometry function  which 

controls, along with LAI, the gap fraction in a canopy [37]. 

The mutual obscuring of phytoelements in a clumped canopy 

decreases the G-function to an effective G-function, 

, where ,  is the view 

zenith angle. The effective G-function and increase of 

canopy transparency due the clumping of foliage was 

introduced to the initial homogeneous CR model by Kuusk 

[35] in the Markov chain version of the model. The gap 

fraction is calculated as 

,  and  are Sun and view zenith angles, 

respectively,  is leaf area index, and the hot-spot factor 

 is defined as [36]: 

 

 

 (2) 

 Here  is the leaf area density and  is 

the cross correlation function of the indicator functions , 

, which describe the presence of leaves at the height 

 in two points of distance 

 from 

each other,  is the angle between Sun and view lines of 

sight. 

In a layered homogeneous canopy clumping of foliage 

( ) increases bidirectional gap probability , 

and consequently canopy reflectance [35]. 

As has been shown in Kuusk [36], the cross correlation 

function  in Eq. (2) can be approximated by the 

autocorrelation function  of the indicator function 

. Replacing in Eq. (1) expressions for gap 

fraction and hot spot factor the Eq. (1) gets the form 

 

 (3) 

where  is the integral in the exponent of Eq. (2). The 

last component in the exponent in Eq. (3) corresponds to the 

correction factor  in Eq. (1). 

In homogeneous vegetation canopies of finite leaf size, 

finite geometrical thickness of canopy, and of random 

foliage distribution the correlation  decreases 

monotonously from 1 to 0 as a function of distance. It can be 

approximated by an exponential function, correlation radius 

of which is determined by mean leaf size. In the hot spot 

, and . If the Sun 

and view direction are far from each other and foliage 

spacial pattern is random, then . The correction 

factor  is not less than one. 

An attempt to estimate correlation function  in 

the pine forest of Järvselja data-base was done using 

airborne lidar data [23]. Each green line in Fig. (1) denotes a 

random transect, and the solid blue line is the mean value of 

the autocorrelation function . The high frequency 

oscillation of the mean function (period about 0.9 m) is 

caused by the emitted pulse pattern in lidar data. Weak local 

minima at about 4 m and 12 m, and local maxima at about 7 

m and 16 m are caused by the finite diameter of tree crowns 

and tree pattern in the stand. 

If the main part of foliage is at the levels where the 

distance between Sun and view lines of sight  falls in 

the range where the correlation function  is negative 

then the integral  is negative. That means, the 

bidirectional gap probability  is in such canopy 

less than in a random canopy - we see more shadows and the 

canopy looks darker than the random canopy of the same  
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Fig. (1). Autocorrelation function of the airborne lidar signal in the 

Järvselja pine stand discriminated to an indicator function at the 

level  m. The solid blue line depicts the average value.  

 

LAI and same optical properties of foliage. Obviously in 

forests the decrease of bidirectional gap probability caused 

by grouping of foliage into tree crowns and the tree pattern 

dominates over the increase of bidirectional gap probability 

due to the leaf-scale clumping and mutual shading of foliage 

in tree crowns. That can be accounted for by joining the 

clumping correction and grouping of foliage into tree crowns 

into the single clustering parameter . Using the analogy of 

the Markov models of canopy transparency introduced by 

Nilson [38], the clustering parameter  is equal to 1 in 

random canopies,  in clumped canopies, but in forests 

where foliage is grouped into tall tree crowns of significant 

vertical extent ,  

 (4) 

Looking vertically as the nadir-looking satellite images 

we do not see the sides of tree crowns, therefore  is 

used for the view direction in Eq. (4). 

3.2. Inversion of the Model 

The two-layer homogeneous canopy reflectance model 

ACRM [13] is used for forests so that the upper layer 

represents the layer of tree crowns, and the lower layer the 

understorey vegetation. The value of the clustering 

parameter  in the tree layer was estimated for a birch, pine, 

and spruce stand using data from the Järvselja data-base and 

CHRIS spectral signatures of July 5, 2010. There are four 

different LAI estimates in the Järvselja data-base - the 

allometric LAI, the effective LAI measured with LAI-2000, 

and two corrected LAI values using different algorithms to 

correct effective LAI [23]. Clustering parameter values were 

estimated by the inversion of the ACRM model so that leaf 

and ground vegetation parameters were fixed to the 

measured values and LAI values were fixed to these four 

estimated values. The respective clustering parameter 

estimates are , , , and  in Table 1. 

We see that having fixed leaf optics and ground 
vegetation parameters, different LAI values return different 
estimate of the clustering parameter, and vice versa. The 
clustering parameter has its lowest value in the dense spruce 
forest, the intermediate value in the broadleaf forest, and the 
highest value in the pine forest where we have well separated 
tree crowns high above ground surface. 

In the estimation of LAI by the inversion of ACRM in 
the whole scene 16 CHRIS bands and 21 Hyperion bands 
were used. Leaf area index was estimated separately for pine, 
spruce, and broadleaf stands, and grasslands. Effective leaf 
and needle optics parameters and understorey optics 
parameters were fixed dependent on forest type. Despite the 
thorough analysis of the angular dependence of gap fraction 
in mature forest stands by Kuusk et al. [39] suggest to use 
erectophile leaf angle distribution for the crown layer of 
mature forests, the LAD was fixed to spherical for all stands. 
In a forested landscape there are stands of various age, stand 
density, site fertility, species composition etc, therefore, 
there is no justification to fix the clustering parameter for a 
forest type (species) in the inversion. Also, the amount of 
understorey vegetation varies depending on the soil fertility 
and canopy cover of the tree layer. In the ACRM inversion 
three input parameters were left free -- LAI of the tree layer, 
the clustering parameter  in the overstorey layer, and the 
LAI of ground vegetation. The clustering parameter  was 
allowed to vary in the range 1.0-1.3 in spruce stands and in 
the range 1.0-1.4 in pine and broadleaf stands. 

For non-forested areas the spherical leaf angle 
distribution was used, the clustering parameter was fixed to 1 
and optical parameters of typical green leaves were used. 
The free parameters in the inversion were LAI and soil 
reflectance. 

The allowed range for  values was less than we see in 
Table 1. The background of this restriction is the use of 
universal effective leaf optics parameters in all inversions of 
the given forest type. Forests of different age, density, and 
site fertility have different bark and stem area ratio to the 
green leaf area which modifies effective leaf reflectance and 
transmittance. We have no information to account for such 
differences. In the inversion the mismatch of effective 

Table 1. Clustering parameter for different forest types. 

Stand LAIall all LAIeff eff LAI1 1 LAI2 2 

Birch 3.93 1.55 2.94 1.45 3.14 1.46 2.89 1.45 

Pine 1.86 1.87 1.75 1.89 2.55 1.78 2.21 1.81 

Spruce 4.36 1.16 3.76 1.22 5.03 1.15 4.32 1.16 
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optical parameters could be compensated by nonrealistic 
clustering parameter values if there is no restrictions to the 
range of  values. 

 

4. RESULTS 

4.1. Elementary Sampling Units 

The 42 elementary sampling units of the VALERI project 
are within the range both the CHRIS scene CD78 and 
Hyperion scene of August 18, 2005. Thus, the inversion of 
the CR model was run both using CHRIS data of July 5, 
2010 and Hyperion data. LAI estimated by CR model 
inversion is compared to MODIS and MERIS LAI values, 
and LAI estimates based on LAI-2000 measurements and 
allometric regressions in Fig. (2). LAI estimated from 
CHRIS images is slightly higher than that from Hyperion 
images, and the variation of LAI values is higher. The 1 km 
pixels of MODIS LAI have the range 3.5-5.0. LAI values in 
MERIS LAI maps of 300 m resolution are systematically 
lower and have a wider range. Terrestrial LAI estimates from 
optical measurements have the range of values which is 
rather close to CHRIS-ACRM values, however, the stand-
by-stand correlation is low. Allometric LAI values are higher 
than any of the optical LAI estimates. 

4.2. Forest Stands 

4.2.1. Broadleaf Stands 

Leaf area index of 2245 broadleaf stands was estimated 

by the inversion of ACRM using CHRIS data and of 1299 

stands using Hyperion data. Estimated stand total LAI 

(overstorey and understorey LAI) is plotted in Fig. (3) 

against NDVI together with allometric LAI using relations 

 by Repola [26] where  and  are breast-

height diameter and tree height, respectively. In the 

allometric LAI the understorey LAI is accounted for as well. 

Using CHRIS data the NDVI was calculated using bands 14 

(NIR, 777 nm) and 8 (red, 672 nm). Bands 43 (NIR, 783 nm) 

and 34 (red, 691 nm) of Hyperion were used for the NDVI of 

Hyperion data. LAI from CHRIS data reveals the typical  

 

Fig. (2). Histograms of estimated LAI in VALERI elementary 

sampling units: LAI  - allometric LAI, LAI-2000  - effective 

LAI corrected by Nilson and Kuusk [40] algorithm, Can-Eye - LAI 

from hemispherical images, CHRIS+ACRM - inversion of CHRIS 

data of 05.07.2010, HYPERION+ACRM - inversion of Hyperion 

data of 18.08.2005, MODIS - MODIS LAI product of 1.-8.07.2010, 

MERIS - mean value of MERIS LAI products 1.07-31.08.2011.  

 

Fig. (3). Leaf area index of broadleaf stands estimated by ACRM 

inversion using CHRIS and Hyperion data, and allometric relations 

by Repola [26]. 
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nonlinear relationship to NDVI. A group of high LAI values 

at NDVI values less than 0.85 (about 4% of inversions) are 

the failed inversions of ACRM using CHRIS data. 

Involvement of shortwave NIR bands of Hyperion (bands 95 

- 216) in the CR model inversion makes the results of 

inversion more stable and there are only few failed 

inversions. At the same time, the average value and the range 

of estimated LAI is smaller than using CHRIS data, and the 

relation between NDVI and estimated LAI is weaker. 

Allometric relations by Repola [26] return low LAI values 

also in case of high NDVI values and rather high LAI values 

in case of NDVI < 0.85 what is difficult to explain. 

 

 

The estimated LAI from CR inversion using CHRIS data 

and from allometric relations by Repola [26] in Fig. (4) have 

similar range, however there is almost no correlation 

between these two LAI estimates, . 

4.2.2. Needle-leaf Stands 

Leaf area index of 490 spruce stands and 636 pine stands 
estimated using CHRIS data, and of 238 spruce stands and 
253 pine stands using Hyperion data together with allometric 
LAI is plotted against NDVI in Fig. (5). While CHRIS and 
Hyperion results are in the same range, the allometric LAI 
values are systematically higher, see also Fig. (6). The LAI-
NDVI relation is not so pronounced as in case of broadleaf 
stands. 

4.3. CHRIS Scene 

For the estimation of LAI in the whole CHRIS scene the 
scene was classified into 96 classes and the ACRM was 
inverted four times separately on every class using effective 
optical parameters of pine, spruce or broadleaf stands, or of 
grass. The estimated LAI was calculated as the weighed 
mean of these four LAI estimates having the probabilities of 
every four land cover type in a class as the weight, Fig. (7). 
None of the stand in the forestry database falls into classes 
77 and 96, grassland type was assigned to these signature 
classes. The LAI map generated this way is in Fig. (8). In 
Fig. (9) the histogram of estimated LAI values in the CHRIS 
scene is compared to the LAI histograms from MODIS and 
MERIS LAI products of the same area. 

The distribution of LAI values over the same area using 

different estimation methods is very different. The mean LAI  

 

  

 

Fig. (4). Leaf area index of broadleaf stands estimated by ACRM 

inversion using CHRIS data, and allometric relations by Repola 

[26]. 

 

Fig. (5). Leaf area index of needle-leaf stands estimated by ACRM 

inversion using CHRIS and Hyperion data, and allometric relations 

by Repola [27]. 

 

Fig. (6). Leaf area index of needle-leaf stands estimated by ACRM 

inversion using CHRIS (blue dots) and Hyperion (red dots) data, 

and allometric relations by Repola [27]. 
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Fig. (7). Distribution of land-cover types between spectral signature classes. 

 

 

Fig. (8). LAI map of the CHRIS scene CD78, 5 July 2010, estimated by the inversion of ACRM canopy reflectance model using CHRIS 

spectral signatures. Brown line is the boundary of the Järvselja Training and Experimental Forestry District. The black dots mark the stands of 

the Järvselja data-base [22]. 

 

Table 2. Statistical parameters of LAI estimates in the CHRIS scene. 

LAI Product Pixel Size Mean STD 

ACRM/CHRIS 17 m 4.19 1.91 

MERIS 300 m 3.30 0.80 

MODIS 1 km 4.75 1.24 

 

and standard deviation (STD) are listed in Table 2. While 

differences in the dispersion of estimated LAI values may be 

caused by differences in pixel size -- 1 km of MODIS LAI 

product, 300 m of MERIS LAI product, and 17 m in the 

CHRIS image, such differences in pixel size do not explain 

differences of the mean LAI over the 17 km  17 km scene.  

 

The MERIS LAI values are systematically less than MODIS 

values, and the distribution is not so wide. The Kolmogorov-

-Smirnov and chi-square tests [41] in pair-vise comparisons 

of these distributions show that these distributions are not 

consistent, tests return strictly . 
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5. DISCUSSION AND CONCLUSION 

The homogeneous two-layer canopy reflectance model 

ACRM [13] was applied for the estimation of leaf area index 

of the hemiboreal forested landscape using Proba/CHRIS 

Mode 3 spectral images of the test site. Land cover types 

were grouped into four classes - spruce, pine and broadleaf 

forests, and grassland. Cover type specific effective optical 

parameters were used for the overstorey layer of forests. The 

understorey vegetation was considered typical green 

vegetation of the region, and only the LAI of understorey 

was allowed to vary in the inversion. In the overstorey layer 

effective optical parameters of foliage consider the share of 

branches. The grouping of foliage into tree crowns of 

significant vertical extent is a kind of regularity in the three-

dimensional foliage pattern. This regularity was accounted 

for in the effective geometry function  by the 

regularity parameter  which along with leaf area index 

controls the bidirectional gap fraction of the overstorey 

canopy. The estimated total leaf area index of understorey 

and overstorey of stands is compared to the ground truth 

estimates at elementary sample units of the VALERI project, 

to the allometric LAI estimates of stands described in the 

forestry data base, to the MODIS and MERIS LAI estimates, 

and to the LAI estimates by ACRM inversion using 

Hyperion data where Hyperion and CHRIS images overlap 

(53% of the CHRIS scene). Hyperion data were acquired 

five years earlier which may explain some differences in LAI 

values, however there has been no drastic change in land use 

in the region in last five or ten years which could cause 

significant changes in land cover in the whole scene. 

The data sources in use have very different spatial 
resolution. Ground truth measurements are virtually point 
data. Pixel sizes of satellite images vary from 17 m (0.03 ha -
- CHRIS) to 30 m (0.09 ha -- Hyperion), 300 m (9 ha -- 
MERIS LAI product), and 1 km (100 ha -- MODIS LAI 
product). The average size of stands in the forestry data base 
is 2.1 ha, however the standard deviation of the stand size 
distribution is 5.0 ha, thus the whole scale of stand sizes 
from 0.03 ha to more than 200 ha is rather equally 
represented. Therefore, large pixels of satellite products are 
mixed pixels in the sense of cover type, but not necessarily 
of varying LAI inside a pixel. In the analysis of CHRIS 
images the mixed pixels can be avoided using the buffered 
stand polygons. In Hyperion images the small stands have 
numerous mixed pixels. In MERIS and MODIS LAI maps 
every pixel is an average over several stands, as a rule. 

Both the MODIS and MERIS LAI products base on solid 
algorithms, however these products over the same scene of 
forested landscape are different. While the validation of 
MODIS and MERIS (CYCLOPES) LAI products using 
global field measurement data by Fang et al. [5] revealed 
LAI differences around  1.0 LAI units, here we see even 
higher discrepancies. There is no criteria which one we 
should consider more reliable, even the in situ optical and 
allometric LAI estimates in the elementary sampling units of 
the VALERI project are totally different. The MODIS LAI 
values are systematically higher than MERIS and CHRIS 
estimates while the overlapping of MERIS and CHRIS LAI 
histograms is better. At the same time the allometric LAI 
estimates exceed the CHRIS estimate and overlap MODIS 
data in average. Surprisingly, the stand by stand correlation 
of allometric and CHRIS LAI estimates is very low while in 
the average these two LAI estimates are not so different: 4.9 
and 3.7 in broadleaf stands, 4.3 and 3.0 in pine stands, and 
4.9 and 5.5 in spruce stands, respectively. The almost 
missing dependence of NDVI on the allometric LAI in 
broadleaf stands (Fig. 3) arouses suspicions in the reliability 
of the allometric method. 

Rather similar attempt to estimate LAI of forest stands is 
in the paper by Schlerf and Atzberger [8] where spectro-
directional CHRIS Mode 1 observations (62 spectral bands, 
34 m pixels in nadir), the Invertible Forest Reflectance 
Model INFORM, and look-up-table method were used. The 
estimated LAI values of 15 Norway spruce stands and 13 
stands of European beech at the Idarwald, Germany, exceed 
our CHRIS estimates in the average. The main differences in 
the procedures are as follows. The test site in the CHRIS 
scene at Järvselja includes the whole possible range of stand 

 

Fig. (9). LAI histograms of the CHRIS scene; a) MODIS LAI 

product, LAI  = 4.8; b) MERIS LAI product, LAI  = 3.3; 

c) ACRM inversion using CHRIS data, LAI  = 4.2. 
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age, growth conditions, and species composition. The 
elementary sampling units of the VALERI project are also 
selected to represent the whole variety of stands of the test 
site. In the experiment by Schlerf and Atzberger [8] the 
stands large enough and with relatively homogeneous 
canopy structure were selected. The involvement of off-nadir 
observations increased the stability of LAI estimation. This 
is the case only if the CR model reproduces well directional 
variations of forest reflectance. This may be problematic 
even in heterogeneous vegetation radiative transfer models 
[39] -- in order to adequately reproduce the asymmetry of 
radiation scattering in conifer canopies the Ross-Nilson 
phase function of foliage had to be replaced by the Henyey-
Greenstein phase function. 

The comparison of the LAI estimation using the simple 
two-layer homogeneous CR model ACRM to other indirect 
methods confirms that the inversion of the ACRM provides 
comparable LAI estimates of hemiboreal forested landscape 
if the regularity of foliage 3D pattern in forests is accounted 
for. The processing time of the 16 band 744 744 pixel 
CHRIS scene on a 3 GHz Linux PC was: 25.2 s image 
classification in GRASS-7.0, 18.2 s the inversion of ACRM 
on 96 spectral signatures. Thus, the method is operational on 
every PC and can be used for the monitoring of LAI seasonal 
or year-to-year changes on large forested areas using satellite 
images of moderate or even high spatial resolution. 
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