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Abstract: Spatial variability in species richness has been postulated to depend upon environmental factors such as cli-

matic variability, Net primary productivity and habitat heterogeneity. The Advanced Very High Resolution Radiometer 

(AVHRR)-Normalized Difference Vegetation Index (NDVI) has been shown to be correlated with climatic variability, 

Net primary productivity and habitat heterogeneity. Moreover, Landsat Thematic Mapper (TM) derived habitat diversity 

indices have been used to reflect habitat heterogeneity. Interannually average NDVI and its variability (standard deviation 

and coefficient of variation) as well as Landsat Thematic Mapper derived habitat diversity index were correlated with 

mammal species richness at landscape scale. Species richness related unimodally to interannual average NDVI and posi-

tively to variability of NDVI and habitat diversity index. Conversely, at regional scale mammal species richness were cor-

related with interannually average NDVI and coefficient of variation of NDVI. Species richness related negatively to the 

latter and positively to interannually average NDVI. Though these relationships are indirect, they apparently operate 

through the green vegetation cover. Understanding such relationships can help in estimating changes in species richness in 

response to global climatic change. 
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INTRODUCTION 

 Explanations for geographical variation of species rich-
ness have stimulated much discussion and numerous hy-
potheses have been advanced to account for species richness 
patterns [1, 2]. Each hypothesis only successfully explains 
patterns of species richness in specific locations for certain 
taxonomic groups and at certain scales. Patterns of species 
richness at landscape and regional scales have been of con-
tinual interest to biogeographers and ecologists [3]. Species 
richness on these two spatial scales seem likely to be con-
trolled by different factors. Regional species pools exist, the 
sizes of which probably depend on factors that act on coarse 
scales (e.g., climatic variability); landscape subsets seem 
likely to be derived from the regional pool by landscape 
processes such as habitat heterogeneity. This hypothesis 
suggests two separate questions: What factors determine the 
size of regional species pools, and what factors control the 
subsampling from the regional pool that establishes land-
scape pools? 

 The most popular biophysical factors hypothesized to 
affect species richness at regional scale are net primary pro-
ductivity and climatic variability. Whereas habitat heteroge-
neity and net primary productivity are popularly used to pre-
dict species richness at landscape scale [4]. The productivity 
hypothesis predicts that when resources are abundant and 
reliable, species become more specialized, allowing more 
species per unit area. However, empirical evidence shows 
that higher productivity can be either negatively or positively  
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correlated with species richness. In fact, in many systems a 
unimodal pattern is found, with highest species richness at 
intermediate levels of productivity; above the point of central 
tendency species richness decreases as productivity in-
creases, while below the point of central tendency species 
richness increases as productivity increases [5]. A number of 
explanations of this apparent paradox have appeared [6], but 
no single theory has been accepted by ecologists. 

 In regional biodiversity studies, productivity is usually 
calculated from weather station records collected at scattered 
(and often biased) sampling points—these points are ex-
trapolated in order to characterize productivity over a large 
region [7, 8]. Such climate-based models assume that the 
vegetation cover is 'natural', and ipso facto is under the con-
trol of climate [9]. However, at a landscape scale, vegeta-
tion productivity is also influenced by non-climatic factors 
including soil nutrient and structure, topography, disturbance 
and land use. Productivity and related variables have been 
mapped over large areas with remote sensing [4]. Thus, re-
mote sensing has great potential as a source of information 
for mapping patterns of species richness over large areas [10, 
11]. The Advanced Very High Resolution Radiometer de-
rived Normalized Difference Vegetation Index (NDVI) has 
been related to net primary productivity (NPP) at coarse spa-
tial scales [9]. Thus, mean maximum NDVI provide a more 
accurate index of ecosystem productivity compared with 
climate-based models, by virtue of being spatially explicit 
[12]. 

 The heterogeneity of an area is strongly (positively) cor-
related with the number of species that are found in that par-
ticular area [13]. The heterogeneity hypothesis states that 
physically and biologically complex habitats furnish more 
niches that support richer assemblages of biological species 
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compared with simple ecosystems [14]. Factors contributing 
to the environmental heterogeneity are the spatial or tempo-
ral variation in the physical, chemical or biological features 
of the environment that create different conditions (or 
niches) that species can preferentially exploit [15]. Hence, 
species diversity increases with niche or resource diversity 
because each species must occupy a distinct niche [4]. Re-
searchers have examined the spatial configuration of habitat 
variables to predict species richness [4]. Landscape ecolo-
gists have derived or adapted indices of habitat heterogeneity 
from remotely sensed data products such as land cover or 
habitat maps [16]. By combining information about known 
habitat requirements of species with maps of landcover de-
rived from satellite imagery, precise estimates of patterns of 
species richness are possible [17]. In their study [18], used 
Landsat TM derived habitat map to compute the Shannon-
Wiener and Simpson's indices of diversity for the Maasai 
Mara ecosystem, Kenya. Areas with the highest habitat di-
versity were found to support higher numbers of herbivore 
species than areas with relatively less habitat diversity. 
However, some of these indices can be sensitive to spatial 
resolution and to the number of landcover classes, making 
generalizations of their relationships to species richness dif-
ficult [4]. Moreover, researchers have demonstrated that the 
within-region variability of NDVI values, for instance de-
fined as the standard deviation of maximum NDVI relate to 
the heterogeneity of habitats, and consequently have a posi-
tive relationship with species richness [19, 20]. 

 The climatic-stability hypothesis states that accumulation 
of species over a long time in places where environmental 
conditions remained stable and predictable causes high spe-
cies diversity [21, 22]. This is due to the fact that areas with 
predictable and stable climates may permit a more constant 
influx of resources and the evolution of greater specialization 
of niches [2]. By contrast, the exploitation of areas with un-
stable climate may require evolution of broad tolerances to 
deal with a wide range of environmental conditions [7]. This 
should lead to decrease in the number of species as the am-
plitude of periodic climatic fluctuations increases [2]. 

 NDVI has been shown to be highly sensitive to rainfall 
anomalies such as drought [23], allowing NDVI to be used 
as a good proxy of interannual climate variability [24]. 
Therefore, the vegetation index time series give us a possi-
bility to assess the climatic variability over the season and 
over the years (interannual variation). The interannual vari-
ability of NDVI values, as calculated using coefficient of 
variation of maximum NDVI, indicate unstable and unpre-
dictable environments. Consequently, high values of coeffi-
cient of variation of maximum NDVI relate to areas with 
variable climate over a number of years and hence low 
mammal (herbivore) species richness. On the other hand, 
high values of interannual maximum NDVI indicate stable 
and predictable environments and hence relate positively 
with mammal (herbivore) species richness [25]. Many stud-
ies have also demonstrated that maximum NDVI has positive 
linear relationships with species richness of birds and plants 
[26, 27]. 

 Ecologists recognize three levels of diversity: alpha di-
versity is a measure of richness within a single homogeneous 
community; beta diversity measures the change in composi-
tion along environmental gradients between communities 

within a landscape; and gamma diversity describes the num-
ber of species in a landscape containing more than one 
community type [4]. Since most management decisions con-
cerning the conservation of species richness in Kenya are 
made at landscape and regional scales, it is essential to ex-
amine gamma diversity and epsilon (regional) diversity. The 
aim of this paper is to identify the biophysical factors deter-
mining mammal species richness at landscape and regional 
scales in Kenyan rangelands. 

MATERIAL AND METHODS 

Study Area and Animal Species Data 

 Kenya is situated between latitudes 5
o
 40' north and 4

o
 4' 

south and between longitudes 33
o
 50' and 41

o
 45' east (Fig. 

1). The study area encompasses 19 rangeland districts of 
Kenya with diverse landforms ranging from highland moors 
to savanna grasslands to coastal plains, and the analyses 
were carried out on individual district, as well as on the 
combined regional data. The herbivore species (body weight 
greater than 10 kg) data were obtained from Department of 
Resource Surveys and Remote Sensing (DRSRS), Ministry 
of Environment and Mineral Resources, Kenya. The system-
atic reconnaissance flight methodology used by DRSRS for 
aerial census of animals is well-documented [28]. Statistical 
analyses to validate DRSRS survey methodology have 
proved the method and data to be reliable [29, 30]. Topog-
raphic maps of scale 1: 250, 000 were used for flight plan-
ning and all transects conform to the Universal Transverse 
Mercator (UTM) coordinate system. The aerial surveys were 
carried out along transects oriented in east-west direction and 
spaced at 5 km intervals. The standard flying height and air-
craft speed were 120 m and 190 km/hr respectively. Two 
experienced and well-trained observers occupied the rear 
seats of a high wing aircraft (Cessna 185 or Partenevia) and 
counted animals that appeared between two rods attached to 
the wing struts. The field of vision between these rods was 
calibrated by flying repeatedly across ground markers of 
known spacing [31]. The number of animals falling within 
the survey strips on either side of the aircraft along each 5 
km transect segment were counted and recorded into tape 
recorders by the two rear seat observers. Groups of animals 
more than ten in number were also photographed. After 
every survey the tape-recorded observations were transcribed 
to data sheets, which together with processed photographs, 
were interpreted for mammal species using 10  binocular 
microscope and overhead projector. 

 The study was executed at both landscape and regional 
scales. In case of the latter, the sample units 5 by 5 km for 
species data for each of the 19 districts with at least four 
years of survey (Fig. 1) were summed over the whole area of 
every district to give a value for total species richness. 
Whereas at landscape scale the processed data at a 5 by 5 km 
spatial resolution for the districts (Baringo, Kwale, Laikipia, 
Narok and Samburu) were converted to 10 by 10 km grid 
cells by averaging. The number of large mammal species 
was counted in every grid cell (10 by 10 km) to give a value 
for total species richness. 

AVHRR- NDVI Time Series Data 

 AVHRR-NDVI was derived from data collected by the 
National Oceanic and Atmospheric Administration (NOAA) 
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satellites, and processed by the Global Inventory Monitoring 
and Modeling Studies (GIMMS) at the National Aeronautics 
and Space Administration (NASA). The GIMMS group de-
veloped the GIMMS NDVI first generation dataset [32]. A 
complete record for Africa exists since August 1981 at 7.6 
km resampled resolution [33]. NDVI is a ratio derived by 
dividing the difference between near-infrared and red reflec-
tance measurements by their sum: 

NDVI = (NIR-R) / (NIR + R)          (1) 

where NIR = near-infrared measurements and R = visible red 
measurements. Normalization reduces differences due to 
overall brightness of sunlight or of surfaces (e.g., shadows) 
that can strongly influence the image. The magnitude of 
NDVI is related to the level of photosynthetic activity in the 
observed vegetation [34]. Generally, higher positive values 
of NDVI indicate vigor and quantity of vegetation [35] 
whereas negative values are usually associated with bare 
soil, snow, clouds or non-vegetated surfaces. 

 

Fig. (1). Location of Kenya and study districts, a-Mandera, b-Wajir, 

c-Marsabit, d-Turkana, e-West Pokot, f-Baringo, g-Laikipia, h-

Samburu, i-Isiolo, j-Garissa, k-Lamu, l-Tana River, m-Kilifi, n-

Kwale, o-Taita Taveta, p-Kitui, q-Machakos, r-Kajiado and s-

Narok. 

 Cloud contamination and other atmospheric effects, 
along with some effects of sensor geometry, attenuate the 
value of NDVI and contribute to a greater error in the signal. 
To minimize the effect of cloud and atmospheric contamina-
tion, dekadal (10 days) temporal composites of NDVI are 
developed by choosing the maximum NDVI value for each 
individual pixel location. The 10-day maximum value com-
posite procedure selects the 'greenest' value [36], which gen-
erally represents the least cloud contaminated pixel for each 
dekad period [32]. 

 When vegetation cover is low, the spectrum observed by 
remote sensing is generally dominated by soil. Differences 
of bare soil reflectance may cause large NDVI variations. 
This results from differences in colour and brightness arising 

from soil properties as iron amount and organic matter 
amount [24]. Since Kenya experiences a bimodal rainfall 
distribution with peaks in April and November, it has two 
growing seasons. The interannual maximum NDVI used in 
this study generally represents NDVI at the height of the 
growing seasons [36]. Moreover, differences in soil reflec-
tance were presumed to cause minor variations of NDVI 
values because time series data were analyzed for the same 
pixel area. Thus, the effect of soil background is minimized 
by using annual time series data as well as the fact that vege-
tation cover is present and adequate (on an annual basis) 
across the study area. 

Analyses of Data 

 The study aims at measuring ecological variations within 
pixels in such a way that regions affected by occasional 
droughts or erratic changes in the timing and strength of 
rains, could be separated from those where the impact of 
such anomalies is slight. Since the total species richness of a 
region may be constrained by distinct dry or cold seasons 
[37], it is important to quantify the anomalous events such as 
droughts or interannual differences in the timing and strength 
of rains. This was done by aggregating dekads to their ap-
propriate months, calculating standard deviation of maxi-
mum NDVI for each month over the 11 year period, and then 
averaged the standard deviations for all 12 monthly NDVI 
values over the 11 year period (same for average NDVI). 
Thus, the variability over an 11-year period (1982 to 1993) 
of monthly NDVI values represents temporal variation of 
productivity. The historical image products of Kenya com-
prising 396 dekads of maximum NDVI were downloaded 
from the website [35]. These historical NDVI products are 
statistical summaries (i.e., average or maximum NDVI) for 
the historical time period (1982-1993) and hence there is no 
significant influence from cloud contamination. Since 
dekads span from the 1st to the 10th, the 11th to the 20th, 
and the 21st to month end, a year has 36 dekads (i.e., 3 
dekads multiplied by 12 months). Hence, 396 dekads (i.e., 36 
dekads multiplied by 11 years) correspond to an 11-year 
time period. This implies that each month over an 11-year 
period has 33 dekads (i.e., 3 dekads multiplied by 11 years). 
By using Windisp 3.5 time series data processor [38], aver-
age NDVI (AV) was computed for each of the 12 months 
over 11-year period as: 

AV = 1/n  (pv)            (2) 

where p is the individual pixel values (i.e., for all 33 dekads 
maximum NDVI images) and n is the number of dekads. 
Estimating the average NDVI for all 12 monthly values over 
11-year period produced the interannual average NDVI im-
age (Fig. 2a). The standard deviation of NDVI (SD) was also 
calculated for each of the 12 months over 11-year period as: 

SD=  (1/1-n  (xi-x)
 2
)            (3) 

where n is the number of observations (i.e., 33 dekads), xi is 
the deviations from the average and x is the average NDVI 
for individual pixels. Calculating the standard deviation for 
all 12 monthly NDVI values over 11-year period produced 
the standard deviation of NDVI image (Fig. 2b). Coefficient 
of variation was calculated by dividing the monthly standard 
deviation of NDVI with the monthly average NDVI ex-
pressed as a percentage. In addition, the average coefficient 
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of variation was computed from all 12 monthly values over 
11-year period. 

 At landscape scale, in Narok district mammal species 
richness and habitat diversity index were estimated in quad-
rat size of 10  10 km [17]. The Landsat TM based habitat 
diversity index was calculated for every sample unit based 
on habitat map of fine spatial scale (pixel size = 25 m) [17] 
and the commonly used Shannon-Wiener index for quantify-
ing landscape structure was employed [39]. Regression lines 
between the dependent variables (species richness) and the 
independent variables (Shannon habitat diversity index) were 
calculated along with 95% confidence interval. 

 Additionally, the coordinates of the sample units for the 
districts Baringo, Kwale, Laikipia, Narok and Samburu con-
taining species were geometrically conformed to the same 
geographic coordinate system as the NDVI images. Since the 
spatial resolution of the species data (10  10 km) was dif-
ferent from NDVI data (7.6  7.6 km), the point maps repre-
senting species data were overlaid on the NDVI raster im-
ages. For every grid cell of 10  10 km of species data over-
laid on the maximum average NDVI and standard deviation 
of maximum NDVI images, the mean values of average 
NDVI as well as standard deviation were computed. The 
interannualy integrated maximum NDVI variables (viz. av-
erage NDVI and standard deviation) were extracted using 
lower left corner coordinates of the sample unit. Thus each 
sample unit finally contained three variables—NDVI vari-
ables (average and standard deviation) and species richness. 
Regression lines between the dependent variables (species 
richness) and the independent variables (NDVI variables) 
were calculated, as well as the 95% confidence interval. 

 In the case of regional scale, the entire population of grid 
cells (10  10 km) in districts Baringo, Kwale, Laikipia, 
Narok and Samburu were analyzed as a lumped data set. 
Moreover, the mean values of interannual average NDVI and 
coefficient of variation of NDVI were estimated over the 
whole area of each district. The sample units of 5 by 5 km 
for mammal species data for every district were summed 
over the whole district to give a value for total species rich-
ness, only complementary species were considered. Thus, 
each sample unit (i.e., whole district) finally contained: in-
terannual average NDVI, coefficient of variation of NDVI 
and species richness. Since, correlation coefficients calcu-
lated on a grid-cell by grid-cell (i.e., sample unit by sample 
unit) basis are often biased by spatial autocorrelation [40], 
sample of grid cells (10  10 km) with the highest number of 
species in every district were selected for the correlation 
analysis, rather than the entire population [25]. 

 The mean values of interannual average NDVI and coef-
ficient of variation of NDVI were computed over 10  10 
km

2
 grid cells containing species richness for every district. 

Regression lines between the dependent variable (species 
richness) and the independent variables (interannual average 
NDVI and coefficient of variation of NDVI) were calculated, 
as well as the 95% confidence interval. 

RESULTS 

 The interannual average NDVI exhibits a distinct pattern 
in Kenya (Fig. 2a). Predictably, the semi-humid to humid 
zones such as the Lake Victoria region, central highlands and  
 

(a) 

 

(b) 

 

Fig. (2). Spatial distribution of interannual (1982-1993) maximum 

NDVI variables in Kenyan rangeland districts: (a) Average NDVI 

image, (b) Standard deviation image. 

the coastal strip have the highest maximum average NDVI. 
In arid and semi-arid zones, very low values (<0.05) of inter-
annual average NDVI are expected. However, since histori-
cal NDVI values are statistical summaries [35], the averag-
ing procedure resulted in the minimum NDVI value of 0.05. 
The standard deviation of maximum NDVI (Fig. 2b) also 
shows regional patterns. High values occur in arid and semi-
arid zones where large environmental gradients are present 
within a region, as for example from the northeast to the 
southeast of Kenya (excluding the coastal strip). Very arid 
areas (e.g., the northwest around Lake Turkana) exhibit low 
values, consistent with low average NDVI values. Since the 
higher the value of NDVI the more photosynthetically active 
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the cover type [41], low average NDVI values indicate that 
these areas have less photosynthetically active cover types. 

 At landscape scale, the relationships between interannual 
average NDVI and mammal species richness form parabola 
or 'hump-shaped' [13] curves in Narok district (Fig. 3a). This 
indicates that the highest net primary productivity results in 
lower mammal species richness (7, 8). However, when the 
sample of grid cell (10  10 km) with the highest number of 
species in every district was selected for the correlation 
analysis, rather than the entire population [25], the relation 
between interannual average NDVI and mammal species 
richness becomes a positive straight line (Fig. 4a). 

 To understand the relationship between ecosystem pro-
ductivity and mammal species richness at regional scale the 
districts data for Baringo, Kwale, Laikipia, Narok and Sam-
buru were combined (entire population of 10  10 km sam-
ple units) and analyzed concurrently [12]. A unimodal pat-
tern between ecosystem productivity and mammal species 
richness emerged (Fig. 3b). In addition, the relationship be-
tween species richness and interannual average NDVI was 
examined at regional scale when sample units were whole 
districts with unequal sizes [25]. Fig. (4b) shows that species 
richness increases with the increase of interannual average 
NDVI values, no parabola curve formed. 

 Environmental heterogeneity indicates that ecosystem 
productivity varies over an area [15]. Thus the variability in 
productivity, as defined by standard deviation of maximum 
NDVI, correlated positively with species richness at regional 
scale (Fig.5a). In addition, mammal species richness in-
creases with increase in habitat diversity at landscape scale 
(Fig. 5b). Areas with high coefficient of variation of NDVI 
have higher mammal species richness (Fig. 6a). However, 
when selected grid cell of 10  10 km in every district was 
combined and analyzed, higher coefficient of variation of 
NDVI results in lower mammal species richness (Fig.7a). 

 At regional scale, the coefficient of variation of NDVI 
shows a negative correlation with mammal species richness 
(Fig. 7b) which is consistent with the findings of other re-
searchers [27]. However, when the entire population of 10  
10 km sample units were analyzed in the districts Baringo, 
Kajiado, Kilifi, Kwale, Laikipia, Lamu, Narok, Samburu and 
Taita Taveta concurrently, the relation between coefficient of 
variation of NDVI and mammal species richness becomes 
positive (Fig. 6b). 

DISCUSSION 

 The species diversity of natural communities is hypothe-
sized to either increase or decrease monotonically with eco-
system productivity and to be unimodally

 
related to produc-

tivity, with maximum diversity occurring at intermediate 
levels of productivity [6, 42]. The results demonstrate that 
mammal species richness is unimodally related to ecosystem 
productivity at both landscape and regional scales if the 
equal size sample units (10x10 km) are analyzed entirely 
(Fig. 3a, b). Apparently, intermediate levels of average NDVI 
coincide with environments with intermediate levels of pro-
ductivity [9], which is assumed to support a greater biomass 
in an area. In turn, this enables more individual organisms to 
coexist, and thus more species at abundances that make it 
possible for them to maintain viable populations, that over 
time allows an increase in species richness [43]. 

(a) 

 

(b) 

  

Fig. (3). (a) Quadratic plot of interannual average NDVI versus 

mammal species richness in Narok district at landscape scale (r = -

0.381, n= 113). (b) Quadratic plot of interannual average NDVI 

versus mammal species richness at regional scale (entire population 

of 10  10 km sample units analyzed) in the districts Samburu, 

Baringo, Kwale, Laikipia and Narok analyzed as lumped dataset (r 

= -0.195, n= 378). The relations in a and b are statistically signifi-

cant at p<0.05. 

 Moreover, at intermediate levels of productivity, preda-
tors (carnivores) can maintain diversity among prey by re-
ducing interspecific competition [15]. This mechanism 
breaks down in low- and high- productivity environments, 
where predators are respectively too infrequent to thin their  
 



12    The Open Remote Sensing Journal, 2008, Volume 1 Boniface Oluoch Oindo 

(a) 

 

(b) 

 

Fig. (4). (a) Scatterplot of interannual average NDVI versus mam-

mal species richness at landscape scale (selected grid cells of 10  

10 km analyzed), r = 0. 588, n=19. (b) Scatterplots of interannual 

average NDVI versus mammal species richness at regional scale 

(sample units, unequal areas of whole districts), r = 0. 661, n=19. 

The relations in a and b are statistically significant at p<0.05. The 

least-squares fit for the relations in both a and b were fitted with 

straight lines because residuals tend not to vary in a systematic 

fashion between positive and negative. Symbols for districts are 

given in Fig. (1). 

prey or so numerous that only the best defended prey persist 
[15]. Furthermore, natural ecosystems with low productivity 
environments lack niche or resource diversity to allow vari-
ous species to coexist [4], encouraging species adapted to the 
more productive niche to dominate the community, thereby  
 

(a) 

 

(b) 

 

Fig. (5). Scatterplots of mammal species richness versus (a) stan-

dard deviation of maximum NDVI at regional scale (r = 0.577, n = 

113) (b) Shannon habitat diversity index at landscape scale (r = 0. 

725, n =43). The relations in a and b are statistically significant at 

p<0.05. The least-squares fit for the relations in both a and b were 

fitted with straight lines because residuals tend not to vary in a sys-

tematic fashion between positive and negative. 

decreasing overall species diversity [44]. In higher produc-
tivity areas, resource diversity declines due to increased pro-
duction of woody species, which in turn reduces the primary 
production of grass resources (because of shading by trees) 
[45]. Consequently, the reduced variety of resources results 
in more individuals per few species [46] rather than more 
species. Although the unimodal patterns suggest that  
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(a) 

 

(b) 

 

Fig. (6). (a) Scatterplots of mammal species richness versus coeffi-

cient of variation in Samburu district at landscape scale (r = 0 .608, 

n =127). (b) Scatterplots of mammal species richness versus coeffi-

cient of variation (entire population of 10  10 km sample units 

analyzed) in the districts Baringo, Kajiado, Kilifi, Kwale, Laikipia, 

Lamu, Narok, Samburu and Taita Taveta analyzed as a lumped data 

set (r = 0. 222, n =797). The relations in a and b are statistically 

significant at p<0.05. The least-squares fit for the relations in both a 

and b were fitted with straight lines because residuals tend not to 

vary in a systematic fashion between positive and negative. 

productivity is a primary factor determining species richness, 
productivity could simply be correlated with factors that ac-
tually generate diversity. One such factor may be environ-
mental heterogeneity [15], in this case estimated from the 
standard deviation of maximum NDVI (Fig. 5a), coefficient 
of variation of NDVI (Fig. 6a, b) and habitat diversity index  
 

(a) 

 

(b) 

 

Fig. (7). Scatterplots of coefficient of variation of NDVI versus (a) 

mammal species richness at landscape scale (selected grid cells of 

10  10 km analyzed), r = -0. 518, n =19 and (b) mammal species 

richness at regional scale (sample units, unequal areas of whole 

districts), r = -0. 495, n =19. The relations in a and b are statistically 

significant at p<0.05. The least-squares fit for the relations in both a 

and b were fitted with straight lines because residuals tend not to 

vary in a systematic fashion between positive and negative. Sym-

bols for districts are given in Fig. (1). 

estimated from Landsat TM (Fig. 5b). Presumably, variabil-
ity in maximum NDVI represents spatially heterogeneous 
environment [47] that reflects diverse habitats and this is in 
agreement with the findings in Fig. (5b). Since individual 
species tend to occur only in specific habitats, the number of 
species increases as habitat diversity increases [48]. Fur-
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thermore, variability in maximum NDVI most likely repre-
sents a seasonally changing environment where different 
species may be suited to conditions at different times of the 
year. Hence, more numbers of species might be expected to 
coexist in a seasonal environment than in a completely con-
stant one [46]. 

 However, if the selected (Fig. 4a) sample units (10  10 
km) and whole districts with unequal sizes (Fig. 4b) were 
analyzed, the relation between mammal species richness and 
interannual average NDVI is a positive straight line (Fig. 4a, 
b). In the case of coefficient of variation of NDVI, if the 
selected (Fig. 7a) sample units (10  10 km) and whole dis-
tricts with unequal sizes (Fig. 7b) were analyzed; higher val-
ues result in lower mammal species richness. This indicates 
that under such sampling methods these NDVI variables-
interannual average NDVI and coefficient of variation of 
NDVI represent climatic variability [25]. The interannual 
variability in vegetation takes place as a result of climatic 
variability affecting germination and growth [49]. Hence, 
large variations in vegetation composition and growth are 
seen in arid and semi-arid areas where rainfall is sporadic 
and the response of vegetation to such rainfall is rapid [50]. 
Thus, the vegetation index time series give us a possibility to 
assess the climatic variability over the season and over the 
years [51]. For instance, calculating the coefficient of varia-
tion of NDVI for a number of years may describe the relative 
variability of vegetation cover for a given region. Conse-
quently, regions with high coefficient of variation of NDVI 
should reflect regions with large variations in vegetation 
composition and growth. Such regions are likely to have 
unstable and unpredictable climatic conditions over a num-
ber of years. On the other hand, regions with low coefficient 
of variation of NDVI should depict regions with small varia-
tions in vegetation composition and growth. The results (Fig. 
4a, b) show that higher interannual average NDVI increases 
mammal species richness, whereas higher coefficient of 
variation of NDVI decreases mammal species richness (Fig. 
7a, b). 

 So, why does higher interannual average NDVI favor 
high species richness? One possible explanation is that inter-
annual average NDVI stands for environmental resources, 
which may be utilized by herbivores species such as green-
leaf biomass, photosynthetically active biomass, and biomass 
of green vegetation [34, 52, 53]. Interannual average NDVI 
is strongly associated with climatic variables (average annual 
rainfall and percentage moisture availability) related to vege-
tation growth [25, 54]. Therefore, higher interannual average 
NDVI should represent high above-ground biomass. Conse-
quently, herbivore species richness should be high in dis-
tricts with higher interannual average NDVI due to abun-
dance of above-ground biomass [45]. When the coefficient 
of variation of NDVI over an eleven-year period is consid-
ered, districts with highest coefficient of variation have the 
lowest number of mammal species (Fig. 7a, b). Apparently, 
regions with high coefficient of variation have high average 
annual temperature and high potential evapotranspiration 
[25] that reduce biomass production [55]. 

 Predicting mammal species richness requires precise en-
vironmental data. However, the regional perspective requires 
the sacrifice of ecological precision for the sake of the gen-
erality, as well as the provision of more data thereby allow-

ing statistical predictions. Environmental and species rich-
ness relationships, documented by regression statistics, can 
be used to identify areas more likely characterized by high 
species diversity [56]. However, there are limitations inher-
ent to the data and to the approach used. The variability in 
vegetation cover measured from AVHRR data is the result of 
multiple influences: interannual variability in rainfall and 
temperature due to intrinsic characteristics of the climate, 
climate trends which exceed the 11-year period, vegetation 
successions, anthropogenic land-cover changes, and variabil-
ity in the state of the atmosphere [41]. A more comprehen-
sive analysis requires investigation of other characteristics of 
time variability in surface conditions such as Fourier trans-
form, amplitude of the variations, summed changes between 
neighboring months, among others [41]. 

CONCLUSION 

 This study has demonstrated that remotely sensed data 
can provide both spatial and temporal quantitative informa-
tion on vegetation reflectance, which can be translated into a 
measure of environmental factors that influence mammal 
species richness at different spatial scales. At landscape 
scale, the results established that interannual average NDVI 
relates to net primary productivity, which increases mammal 
species richness at intermediate levels of productivity. In 
addition, standard deviation of maximum NDVI, coefficient 
of variation of NDVI and Landsat Thematic Mapper derived 
habitat diversity index relate to habitat heterogeneity, which 
supports richer assemblages of mammalian species. On the 
other hand, at regional scale interannual average NDVI re-
flect stable and predictable environments [51] that support 
high mammal species richness. This finding is consistent 
with the hypothesis that high species diversity occurs in sta-
ble and predictable environments [21, 22]. It is of particular 
interest that persistence of stable regional conditions, which 
permitted species specialization [8], and hence high species 
diversity, may also have enhanced development of stable 
human cultures and agricultural development [22]. Hence, 
the pressure on nature is often particularly great in the dis-
tricts with high mammalian species richness such as Narok, 
Laikipia, Taita Taveta and Kitui where numerous cases of 
human-wildlife conflicts have been reported [57]. The results 
also demonstrate that coefficient of variation of NDVI repre-
sents unstable and unpredictable environments (drought-
prone). Such regions have low aboveground biomass that 
cannot support high mammalian species richness [25]. The 
study reveals that the multi-temporal data of vegetation re-
flectance derived from satellites can be used to provide dis-
tinction between stable and unstable regions in Kenya. 
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