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Abstract: A turbulent extension of Ohm’s law, derived from the self-consistent action-angle transport theory, is 

presented. The equation describes the steady-state profile of the current density in axisymmetric magnetized plasmas in 

the presence of magnetic turbulence. The hyper-resistive, helicity-conserving contribution, usually derived in the 

framework of magneto-hydro-dynamics, is recovered, and the hyper-resistivity is defined. Additionally, the generalized 

Ohm’s law contains an anomalous resistivity term, and a term proportional to the current density derivative. For given 

thermodynamic profiles, the numerical solution of the equation shows that turbulent contributions, besides regularizing 

the current density profile in the central region, lead to an increase of the total plasma current. This “turbulent bootstrap” 

effect provides a possible explanation to discrepancies recently observed between experimental current profiles and 

neoclassical predictions. 
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1. INTRODUCTION 

 Large part of the effort in the quest to controlled 

thermonuclear fusion energy focuses on the tokamak 

concept, a toroidal chamber in which a high temperature 

plasma is confined by a complex magnetic field topology. 

For stability reason, an important contribution to the latter is 

created by a toroidal plasma current which is induced by 

slowly increasing a current through an electromagnetic 

winding linked with the plasma torus. This is inherently a 

pulsed process, and a fusion reactor based on the original 

tokamak concept could only operate for short periods. An 

important advance in the path toward a tokamak reactor 

would be to achieve a steady-state scenario in which the 

toroidal plasma current is generated non-inductively. 

Unfortunately, all external current generation means 

envisioned so far, such as radio-frequency-wave or neutral 

beams injection, besides representing additional expensive 

components, are characterized by small efficiencies. A 

possible way out is to conceive new plasma regimes that 

combine favorable confinement properties with a large 

fraction of the so-called “bootstrap” current. The latter is a 

current amplification mechanism tied to intrinsic plasma 

diffusion in toroidal geometries [1], which therefore requires 

no external power. At best, a steady-state tokamak reactor 

would sustain all of its current via the bootstrap effect. An 

obstacle to this scenario is related to the fact that this current 

drive mechanism is ineffective around the plasma center 

where the pressure gradient vanishes [2]. The growing 

attention posed by the fusion community to the effects of  
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turbulence in explaining anomalous transport, however, led 

in the early 90’s to the realization that turbulence, always 

present at some level, actually helps to partly overcome this 

intrinsic limitation by diffusing the bootstrap current toward 

the center. In particular, since a tokamak with very large 

bootstrap current is inherently unstable to tearing modes, 

poloidal flux is generated spontaneously near the axis by the 

dynamo effect induced by this instability. This realization 

has stimulated various theoretical investigations in which the 

idea of a “fully bootstrapped tokamak” was put forward [3, 

4], and experimental campaigns aimed at realizing, via a 

careful optimization of the plasma profiles, steady-state 

operation with a large bootstrap contribution [5]. The first 

results of this research effort are encouraging, in that several 

machines have now identified, and routinely realize, fully 

non-inductive, high-confinement steady-state regimes in 

which a minimal part of the current density depends on 

externally injected power [6, 7]. 

 In this context, the ability to correctly predict the 

evolution of the current density profile - including the effect 

of plasma turbulence - becomes essential. To this end, 

theoretical studies aiming at deriving a turbulent extension of 

Ohm’s law are advisable. Such equation, which governs the 

radial diffusion of the current density, must include, together 

with the neoclassical terms describing the effects of the finite 

orbit widths of trapped electrons (the bootstrap term), 

anomalous terms that model the effects induced by 

turbulence. Besides from being a key aid in investigating the 

feasibility of steady-state tokamak discharges with a large 

fraction of bootstrap current, in which neoclassical current 

amplification and turbulent current diffusion play synergistic 

roles, such an equation is relevant to study reversed-field 

pinches, in which turbulence is at the heart of the reversal of 

the toroidal field, as well as various phenomena in space and 

astrophysical plasmas, like solar wind, magnetosphere and 



2    The Open Plasma Physics Journal, 2011, Volume 4 Gatto and Chavdarovski 

accretion disks, in which plasma turbulence plays an 

important role. 

 At present, there is still an ongoing debate on which are 

the relevant turbulent terms that can explain the anomalous 

current diffusion observed in experiments, their detailed 

structure, and their physical meaning. It has been proposed 

that turbulence leads to three additional terms in the Ohm’s 

law: (i) a viscous-like term which induces current diffusion 

[8], (ii) an anomalous resistive term which adds to the 

neoclassical resistivity [9], and (iii) a source-like term which 

generates current density to the expenses of the energy in the 

turbulence [10, 11]. Each one of these terms has been 

derived both with fluid and kinetic approaches, so that 

despite their structural similarities they often describe 

different physical phenomena. The main effect of the 

turbulent electron viscosity, or hyper-resistive, term is that of 

redistributing the current density. Since this is accomplished 

by the generation of poloidal field, this term is formally 

equivalent to the -term in the dynamo theory [12, 13]. In a 

plasma with a stochastic magnetic field, whenever the 

collisional electron scattering length is long compared to the 

correlation length of a magnetic field line, as it is in weakly 

collisional plasmas, the electrons streaming along the 

stochastic magnetic field lines will execute a random-walk in 

the direction perpendicular to the equilibrium magnetic field. 

As shown by Rechester and Rosenbluth [14] using a kinetic 

approach, the ensuing particle transport is regulated by a 

particle diffusivity proportional to the field-aligned electron 

velocity. It is reasonable, however, that magnetic field 

braiding will induce an equally strong transport of electron 

parallel momentum across magnetic surfaces [15]. When 

electrons are scattered (by Coulomb collisions or particle-

fluctuation resonances) over a sizable fraction of the minor 

radius in one mean-free time, they carry field-aligned 

momentum with them. This kinetic effect has been discussed 

by Jacobson and Moses [16], and shown to induce a 

relaxation of the plasma toward a Woltjer-Taylor state [17]. 

An alternative vision of anomalous current diffusion has 

been obtained following a single-fluid, magneto-hydro-

dynamic (MHD) approach, i.e., by averaging the Ohm’s law 

for a force-free mean field over small scale, small amplitude 

MHD fluctuations (mean-field theory). This approach has 

lead to the identification of the hyper-resistive term with the 

dynamo electric field, i.e., the perturbed 
 
V B  term [13, 

18, 19]. Similar results have been found from reduced MHD 

models as well [9]. In the MHD approach, the essential 

element is the presence of fluctuations, and magnetic 

stochasticity is not required. For a force-free plasma, the 

hyper-resistive effect can be written as an added term in the 

Ohm’s law having the form 
 
B0

2B0 [ h ( j / B0 )] , and has 

the property of incorporating in a natural way the helicity 

conservation properties of the plasma whenever the helicity 

flux 
 

h ( j / B0 )  is zero at the outer plasma surface [19]. 

It has been shown that this functional form encompasses 

both the fluid and the kinetic framework [18]. What differs is 

the realization of the coefficient h , i.e., the underlying 

physical mechanism responsible for the magnetic 

fluctuations. The remaining two turbulent terms usually 

thought to affect the current density evolution in turbulent 

plasmas are the anomalous resistivity, and the source term. 

The first is a natural output of most turbulent theories, 

already well documented in the literature [9]. Since it 

represents a dissipative effect, it is formally equivalent to the 

-term in the dynamo theory [12]. Finally, the source term 

could be the result of different physical processes, the end 

result of which is the local generation of current density due 

to the resonant transfer of linear momentum to the electrons. 

 We propose a turbulent extension of Ohm’s law derived 

in the framework of the action-angle [20] self-consistent [21] 

transport theory. Self-consistency means considering a 

collision operator that includes both diffusion and drag in 

action-space, as opposed to the quasi-linear approach which 

retains only the diffusion part. Our result applies to 

collisionless plasmas where irreversibility is caused by the 

resonance between particle and stochastic magnetic field 

fluctuations, and thus it pertains to the class of kinetic 

dynamos. The turbulent Ohm’s law is built upon results 

derived in a series of papers that present the momentum flux 

and source due to a background sea of magnetic turbulence 

[22, 23]. Here we do not report the details of the derivation, 

referring the interested reader to the literature; instead, we 

start from the momentum flux and source, and manipulate 

them so to obtain the Ohm’s law. Our procedure leads to a 

version of the turbulent electric field that contains an hyper-

resistive term, an anomalous resistivity term, and an 

additional term, referred to as the “cross”-resistivity term, 

that in the current diffusion equation is proportional to the 

derivative of the current density. The detailed structure of the 

corresponding three turbulent transport coefficients is 

presented, showing their dependence on the strength of the 

magnetic turbulence, and on the equilibrium plasma profiles. 

Both the anomalous and cross coefficients contain a piece 

that originates from the electron momentum source, and that, 

for certain plasma profiles, leads to current amplification. 

The effect of these three turbulent terms in shaping the 

current profile is put in evidence by a simple numerical 

study. 

 This paper is organized as follows. In Sec. 2 we present 

the main features of the action-angle approach to tokamak 

transport. The procedure to derive the electron momentum 

transport equation from the action-angle collision operator is 

outlined in Sec. 3. This equation contains a flux term and a 

source term, both proportional to transport coefficients that 

depend on the fluctuation spectrum of the underlying 

turbulence. An exact specification of the latter is a difficult 

task that is not attempted here. Instead, as described in Sec. 

3.1, we adopt an ansatz spectrum that describes the special 

case of magnetic micro-turbulence with < g  and 

k k . By incorporating this ansatz in the momentum 

equation we arrive to the final expressions for the 

momentum flux and source, which are presented in Sec. 3.2. 

The turbulent electric field, derived from the electron 

momentum equation, is presented in Sec. 4, while in Sec. 5 

we introduce the turbulent electric field in the neoclassical 

Ohm’s law, and derive the diffusion equation for the parallel 

current density. A power balance describing the energetics 
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associated to the current density profile is also formulated. 

Sec. 6 presents the results of the numerical solution of the 

current equation which clarify the role of each turbulent term 

in shaping the current profile. The summary and the 

conclusions are presented in Sec. 7. 

2. ACTION-ANGLE TRANSPORT THEORY IN 
TOROIDAL GEOMETRY 

 For completeness, in the present and in the next section 

we give a brief overview of the transport theory in action-

space, adapted to describe transport phenomena in 

axisymmetric, magnetically-confined plasmas (as in tokamak 

machines). For a more detailed presentation of the theory, 

and for examples of its applications, we refer to Refs. [20-

32]. The results that will be used from Sec. 4 on are Eqs. 

(20) and (21). 

 We consider an axisymmetric toroidal device which 

confines a plasma by a slowly varying magnetic field. In this 

context, the collision operators can be expressed in a 

particularly simple and general form [20, 24, 28] by (i) 

introducing action-angle variables to describe the particle 

motion, and (ii) expressing the fields as a sum over plasma 

normal modes. While the use of action-angle variables leads 

to a natural inclusion in the operator of toroidal effects (as 

particle trapping, drifts, etc.), the normal mode expansion 

permits, through a formal solution of Maxwell’s equations, 

the inclusion in the transport coefficients of fluctuation 

spectra that are valid in fully inhomogeneous geometries. In 

the present section we summarize (following closely the 

exposition of Ref. [22]) the main ingredients of the action-

angle approach. In particular, in Sec. 2.1 we define the 

actions and the mode decomposition, in Sec. 2.2 we present 

the self-consistent version of the operator (referred to as the 

“generalized Balescu-Lenard” (gBL) operator in the 

literature), and in Sec. 2.3 we specialize to the case of large 

aspect-ratio tokamaks with strong toroidal field. 

2.1. Action-Angle Variables and Normal Mode 
Decomposition 

 To specify the action-angle variables we adopt, together 

with the Cartesian coordinate set x , the flux coordinates 

= ( , , ) , where  is a minor radius-like variable 

constant on a flux surface, and  and  are, respectively, 

the poloidal and the toroidal angle, both with periodicity 

2 . To be specific, we will take  to be the toroidal flux 

function t / (2 ) , where t  is the toroidal flux 

enclosed by the flux surface. [From now on, the subscript 

t(p)  stands for toroidal (poloidal)]. To express some of the 

results in a more perspicuous way, we also introduce an 

“equivalent” cylindrical radial coordinate r , defined by the 

relation t ( ) = 2 = dS B r2B0,t  (an over-hat 

indicates unit vectors), where the reference field B0,t  is 

chosen to be the toroidal magnetic field on the magnetic 

axis. Thus, r = r( ) = [2 / B0,t ]
1/2

. The actions 

parametrizing the phase-space particle point are taken to be 

[20, 26] J = (Jg , Jb , J ) , Jg = μ0M
2c / q  being the gyro-

action [where μ0 v2 / (2B0 )  is the (lowest order) magnetic 

moment, B0  the total equilibrium magnetic field, v  the 

component of the particle velocity perpendicular to the 

magnetic field, M  and q  the particle mass and charge, 

respectively, and c  the speed of light], J  the toroidal 

angular momentum, 

 

J = MR2 q

c p ( )            (1) 

where p p / 2  is the poloidal flux function and R  the 

major radius, and the longitudinal invariant or bounce action 

Jb , equal to the toroidal flux enclosed by a drift orbit. 

Denoting the projection on the poloidal cross-section of the 

guiding center trajectory with 
 
= ( ) , the bounce action 

can be written as 
 
Jb = (d / 2 )(q / c) ( ;H 0 , Jg , J ) , 

where the triplet (H 0 , Jg , J )  singles out one particular 

particle trajectory. The conjugate angles = ( g , b , ) , 

which are cyclic coordinates (i.e., H 0 / = 0  where H 0  

is the unperturbed Hamiltonian), represent respectively the 

orbit-averaged gyro-phase, the phase of the bounce motion 

and the bounce-averaged toroidal angle. As usual in 

Hamiltonian theory, they are obtained by derivatives of the 

appropriate generating function with respect to the conjugate 

new action. Because  is constant in the absence of 

perturbations, the unperturbed motion is trivial:  develops 

linearly in time. The corresponding set of bounce-averaged 

gyration frequency, bounce frequency, and bounce-averaged 

toroidal (or banana) drift are defined in terms of the 

unperturbed quasi-static (i.e., slowly varying on the transit 

time scale) Hamiltonian H 0  which is a function of J only: 

= H 0 (J ) / J . 

 To linearize, the electrostatic and the magnetic potentials 

are decomposed into unperturbed and perturbed parts, 

= 0 + 1 , A = A0 + A1 . Because J  is a constant of the 

unperturbed motion and  is a cyclic coordinate, we write 

 
H (J , ) = H 0 (J ) + h(J , ) + . The unperturbed 

Hamiltonian, 

H 0 = (1 / 2M )[p (q / c)A0 ]
2
+ q 0 = Mv

2 / 2 + q 0  (where 

p  is the canonical angular momentum p = Mv + qA0 / c , 

and v, v2  is the particle velocity) is allowed to change, due to 

variation of the background fields, but only very slowly 

(quasi-statically) on a transit time scale. The first order 

perturbing Hamiltonian h = q 1 (q / c)v A1  is expanded in 

a Fourier series in the ignorable and periodic angle 

coordinates, h(J, ; t) = h(J, l; t) exp(+il )
l

. The triplet 

of integers 
 
= ( g , b , )  singles out each one of the 

harmonics of the particle perturbing Hamiltonian, or, 

analogously, of the orbital motion. Note that in the general 

case these integers differ from the usual poloidal ( ma ) and 

toroidal ( na ) mode numbers entering the Fourier 
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decomposition of a field with respect of  and , and 

indicating its spatial dependence. The space-time Fourier 

transform of the perturbing Hamiltonian, 

h( J, ; ) = [d / (2 )3 ] (dt / 2 )exp( i + i t) h( J, ; t) , 

describes the energy exchange between waves and particles, 

and is therefore a crucial quantity of the theory. 

2.2. Self-Consistent Action-Angle Collision Operator 

 The gBL transport theory [27] extends the validity of 

Kaufman’s original quasilinear action-angle theory [20] in 

two ways, i.e., (i) is valid for steady-state fluctuation spectra, 

and (ii) is applicable, although through a simplifying 

approximation (the “pseudo-thermal ansatz” of Ref. [21]), to 

realistic plasma turbulence. The latter point will be discussed 

in Sec. 3.1. The former extension is achieved by the 

inclusion in the collision operator of the polarization drag 

felt by the scattered particle. This leads to a transfer of 

momentum and energy to the medium surrounding the 

particle, and therefore introduces self-consistency, since the 

fluctuations are produced by the surrounding medium itself 

(i.e., the remaining particles in the plasma). The distribution 

function of the scattered species 1  evolves according to [28]. 

t f0 ( J1; t) = J
1

D( J1; t) J
1
f0 (J 1; t) F(J 1; t) f0 (J 1; t)  ,  (2) 

where F  is the friction vector which considers the 

polarization field. Indicating with 2 the scattering species 

and with a  each of the normal modes constituting the 

fluctuation spectrum, we write [28] 

 

D( J1 ) =
2 1, 2

1 1 D0 (J 1, 1, 2)  and  

 

F(J 1) =
2 1, 2

1 2 F0 (J 1, 1, 2) , where 

 

D0 (J 1; 1, 2)

F0 ( J1; 1, 2)
=

2

M 2

3

dJ2  Q( 1, J1; 2, J2 )
f0 (J2 )

J
2
f0 (J2 )

 ,  (3) 

Q( 1,J 1, 2, J2 )

2  ( 1 1 2 2 )
a

Ca ( 1,J 1, 2, J2 , = 2 2 )
2         (4) 

and 

 
Ca ( 1, J1, 2, J2 , ) [4  ha ( 1, J1, ) ha

*( 2,J 2, )] / Na a ( )

. In the latter expression, a ( )  is the eigenvalue of the 

Maxwell operator, and Na  is a normalization factor. Eq. (2) 

describes the slow (compared to the characteristic particle 

frequencies) evolution of f0 (J 1; t)  as a result of a random 

walk in action-space, induced by the normal modes a  

generated by species 2. The coefficient Ca , the “coupling 

coefficient”, measures the effectiveness of mode a  in 

coupling particles 1 and 2. The Hamiltonian 

ha = q 1
a (q / c)v A1

a
 to be used in Ca  must be calculated 

using the expression of the particle velocity valid in the 

magnetic geometry of interest, toroidal in our case, and 

evaluating the fields 1  and A1  along the particle orbit. 

 It can be shown that the gBL operator is characterized by 

the following three properties [21, 28]: (i) interaction 

between particles of the same species do not produce any net 

particle transport; (ii) the particle fluxes of the two species 

are equal; (iii) the transport is independent of the radial 

electrostatic potential. Note that the presence of the friction 

vector F  is essential for the operator to possess these 

properties. The self-consistent approach has already been 

employed to study various aspects of particle and energy 

transport driven by thermodynamic forces [21, 27]. 

2.3. Specialization to Large Aspect-Ratio Tokamaks 

 Following tokamak theory, we adopt the large aspect-

ratio and the small gyro-radius orderings, 

(R R0 ) / R0 r( ) / R0 , / L 1 , where 

vth / g  is the gyro-radius, L  is a length characterizing 

the variation of the equilibrium quantities, vth = (2T /M )
1/2

 

is the thermal velocity (T  being the temperature in energy 

units), and R0  is the major radius. In these orderings, the 

safety factor is well approximated by its cylindrical version, 

qsaf rB0,t / (R0Bp ) . Since the toroidal field is predominant 

( Bp / Bt ), we can approximate the modulus of the 

unperturbed magnetic field as 

B B0,t 1
r( )

R0

cos = B0,t 1
r( )

R0

+ B0,t

r( )

R0

2 2sin
2

 .  (5) 

 To the lowest order in the gyro-radius, particles in a large 

aspect-ratio tokamak simply stream along the field lines with 

a parallel velocity that can be expressed in terms of the 

Hamiltonian: 
 
v  u = [(2 / M )(H 0 q 0 Mv2 / 2)]1/2

, 

where = ±1  (indicating the two possible direction of 

motion along the field lines), and u  is the parallel flow 

speed. In general, because of the twisting of the magnetic 

field lines, the toroidal velocity differs from the parallel 

velocity. In view of the tokamak ordering B0 B0,t , 

however, we approximately set 
 
vt v , and from Eq. (1) we 

obtain 

J = MRvt
q

c p ( ) MR u
q

c p ( ) .          (6) 

 Using expression (5) for the unperturbed magnetic field, 

we can recast the parallel flow speed as 

u( ;J ) = u0 (μ0 )[
2 (J ) 2sin ( / 2)]1/2 , where we have 

defined the quantities u0 (μ0 ) 2 μ0B0[ ]
1/2

 and 

2 (J ) {H 0 ( J ) q 0[ ( J )] μ0MB0 (1 )} / (2μ0MB0 )

, and where any  dependence of 0  is neglected. The 

trapped region is identified by = [0,1] , while the 

untrapped region by = (1,+ ] . 

 In the expansion of the radial coordinate, 

 
= 0 + 1 + , the lowest order contribution 0  

represents the toroidal flux enclosed by the magnetic surface 

around which the particle motion evolves, and 1  the 
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excursion from the surface due to drifts. We can therefore 

Taylor expand the unperturbed poloidal flux function as 

p ( ) = p ( 0 ) + ( p / )
0 1 = p ( 0 ) + [1 / qsaf ( 0 )] 1

 (where qsaf  is the safety factor), obtaining from Eq. (6): 

J + (q / c) p ( 0 ) + (q / c)[ 1 / qsaf ( 0 )] = M (R0 + cos )v . 

At zero and first order we have 

 

J +
q

c p ( 0 ) = 0 ,   and    
q

c
1

qsaf ( 0 )
= MR0v  .         (7) 

0  depends only on J , = 0 (J ) , while 1  depends on 

both J  and  because here u = u( ; )  does so. Solving the 

second relation in Eq. (7) we find for the 1  correction: 

1 = [cqsaf ( 0 ) / q]MR0v ( ; J ) . 

3. MOMENTUM TRANSPORT EQUATION 

 In this section we continue the overview of the action-

angle transport theory by presenting the general radial 

transport equation, under a drifting Maxwellian ansatz for 

the lowest order distribution function. Let (x, v; t)  be some 

quantity ( v  = particle velocity) whose mean with respect to 

the distribution function (suppressing species label for the 

moment), 

(x; t) dv (x, v; t) f0 (x, v; t) ,           (8) 

is of physical interest. In particular, the moments =1 , 

Mv  and Mv2 / 2  (where v , v  are the parallel and total 

particle speed, respectively) will lead to the density, parallel 

momentum and energy transport laws, respectively. We 

define the flux surface average of  as its normalized 

volume average restricted to a selected flux surface , 

( , t)
1

V' dx [ (x, t) ] (x; t) ,          (9) 

where V' dV ( ) / d , with V ( )  the volume inside the 

flux surface . 

 The derivation of the transport law begins by taking the 

time derivative of (9), after having made use of definition (8) 

and of the approximation 
 V

' / t 0  (stationary toroidal 

flux surfaces): 

/ t = (1 /V' ) dx dv ( / t)

( ) f0 (x, v, t) (x, v, t)[ ] ,
  

or, in terms of action-angle variables (M 3 dx dv = d  d ), 

t
=

1

V'  M 3 dJ  d  
t

(J , , t) [ ( J, , t) ] f0 ( J, , t){ } .  (10) 

 The time dependence of  arises from the quasi-static 

variation of the equilibrium. As an ansatz to accomplish 

closure, we assume a displaced, locally Maxwellian 

distribution function, so to be able to evaluate transport 

fluxes and sources including the presence of a toroidal 

current. Keeping only the first order term in |V / vth | 1 , we 

have 
 
f0 (J , t) = fM ( J, t){1+V [ ( J, t)] P[ ( J, t)] /T [ (J , t)]}  

where 
 
V  is the parallel drift (flow) speed, 

 
P Mv  is the 

parallel particle momentum, and  

fM ( J, t) = N( ) M 3/2 / [ 3/2  23/2  T ( )3/2 ] 

exp{ [H 0 q 0 ( )] /T ( )}.
 

K0 H 0 q 0 = Mv
2 / 2  is the (unperturbed) kinetic 

energy when a particle is at 0 . Note that in general 

= ( J, ; t) ; here however, f0 ( J )  is the -averaged 

lowest-order solution, so that = (J; t) . Since for far-

untrapped particles the quantity 1  is small, we evaluate all 

the quantities (like N , T , etc.) at = 0 (J ) . Under the 

Maxwellian ansatz, the derivation of the transport law is 

straightforward, and it has been detailed in Ref. [23]. We 

present here only the final result. In terms of the factors 

 

X ( J, t, ; )
d

(2 )3  (J , , t) 
(J , , t)

J
 [ ( J, , t) ]  (11) 

 

Y (J , t, ; )
d

(2 )3  
(J , , t)

J
 [ ( J, , t) ] ,    (12) 

g J  ,       G JP ,       K0 H 0 q 0 =
Mv2

2
 ,   (13) 

as well as the thermodynamic forces (a prime indicating a 

derivative with respect to ) 

 

AN =
N

N
+
q

T 0

3

2

T

T
 ,     AT =

T

T
 ,     AV =

V

V

T

T
 ,    (14) 

the transport equation reads 

t 1
1

t
+
1

V' V'
1

(t)

t

+
1

V' V'
1( ) =U1( )

       (15) 

where the flux 1  and the source U1  are given by 

 

1( )

U1( )
=

2 1, 2

1

V'

2

M1

2

dJ1 d 6z2  Q( 1, J1; 2, J2 )  

 

fM ( J1 ) fM ( J2 )
X (J1, 1; , t)

Y ( J1, 1; , t)
A(J1, J2 , 1, 2) , .      (16) 

where to shorten the notation we have defined z ( J, )  

and 

 

A(J 1, J2 , 1, 2) 1+
V ,1P1
T1

1+
V ,2P2
T2

1 1

T1

2 2

T2
 

 

1+
V ,2P2

T2

G1 
V ,1

T1

1+
V ,1P1

T1

G2  
V ,2

T2
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1+
V ,1P1

T1

1+
V ,2P2

T2

g1 AN ,1 g2  AN ,2( )  

 

V ,1P1

T1

1+
V ,2P2

T2

g1 AV ,1

V ,2P2

T2

1+
V ,1P1

T1

g2  AV ,2  

 

1+
V ,1P1

T1

1+
V ,2P2

T2

g1 
K0,1

T1

AT ,1 g2  
K0,2

T2

AT ,2  .     (17) 

 Note that the  integrations are present only in the X  

or Y  factors, the remaining terms not depending on the 

angles. Eq. (15) with definitions (11)-(17) is the radial 

transport law which describes the time-evolution of any flux-

surface averaged moment of the scattered particle 

distribution function. Note that in order to evaluate Eq. (16) 

we need to specify the term  and the two factors X , Y , 

g  and G  defined in Eqs. (11), (12) and (13). The general 

expressions of these factors have been reported in Ref. [29]. 

Here we will make use only of their limiting expressions 

valid in the far-untrapped case. 

Considering 
 
= Mv Mv  and expressing the results in 

terms of r  using = [1 / (rB0,t )] r , 

/ = [1 / (rB0,t )] / r , Eq. (15) leads to the parallel 

momentum transport equation: 

Va
MN(x; t)V (x; t)

r

t
Va q1NEt r + r

VaVf MNV r  S(1 )  

+
r
Va

V (r ) = (rB0,t )VaU
V  ,             (18) 

where Va = 4
2R0wr  is the toroidal shell (centered at r  and 

of width w ) over which the mode a  is nonzero, and the flux 

and source terms are again given by (16). In the second term 

on the left-hand-side (LHS), Et  is the toroidal induction 

electric field Et = (1 / cR)( p / t) , where the time 

derivative is evaluated at a fixed position in space. While the 

poloidal magnetic field can remain constant (if the external 

fields remain so), the flux surface on which p  has a 

particular value will move. In a tokamak, due to the 

smallness of Bp , the velocity of the flux surfaces is very 

large. As suggested by the presence of the velocity of a flux 

surface, Vf cEt / Bp , the last term in the first raw of Eq. 

(18) is a collisionless version of the Ware-Galeev pinch, 

effective only for trapped particles [and this is the reason for 

the step function S(1 )  yielding 1 (0) for < 1  ( > 1 )]. 

The source term UV
 accounts for the momentum generation 

due to fluctuations. Eq. (18) generalizes the quasilinear result 

of Ref. [30]. 

3.1. Fluctuation Spectrum for Magnetic Micro-

Turbulence 

 As for the standard Balescu-Lenard operator, the 

spectrum contained in D  and F  of Eq. (2) is of the 

“thermal” type, and does not correctly model realistic 

turbulence [28]. This limitation has been overcome in Ref. 

[21], although in an approximate way, with the adoption of a 

supra-thermal spectrum (called the “pseudo-thermal” 

spectrum) which retains the structure of the original thermal 

spectrum (therefore maintaining the required properties of 

the collision operator), but replaces its form so as to better 

represent experimental features. Here we only outline the 

essence of this approximation, since it is well documented in 

the literature. It is assumed that the eigenvalue a  is non-

linearly modified from its thermal value in such a way that 

the turbulent vector potential driven by species 2  has the 

form 

 
| Aa |2 B2 (2)exp{ k2 / [2( k )2 ] k2 / [2( k )2 ]} / ( k )2 , 

where k gi
1
 and k Ls

1
 (with Ls qsaf R0  the shear 

length) are the spectral widths satisfying 
 
k k . The 

overall strength of the magnetic fluctuations induced by the 

entire species 2, indicated with 
 
B2 (2) Br

2
, is assumed to 

be nonzero and approximately constant only within the 

volume of a narrow toroidal shell Va = 4
2rawaR0 . The 

“pseudo-thermal, magnetic micro-turbulence” version of Eq. 

(16) is 

 

12 ( )

U12 ( )
=

ra k 1, 2

1

V' (r )

2

M1

3

Va

dJ1 fM ( J1 )
2

M 2

3

Va

dJ2 fM ( J2 )

 

 

X 1 (J1, 1)

Y 1 (J1, 1)
A(J1, J2 , 1, 2) 2 [ 1 1(J1 ) 2 2 ( J2 )]  

|Ca |2 ( ,1 na ) ( ,2 na )J
g1

2 (zg1 ) J
b1 ma

2 (zb1 ) 

J
g2

2 (zg2 ) J
b2 ma

2 (zb2 ) 
      (19) 

where 
 
Ca

2
= (q1 / c)

2 Aa
2

v 1

2

v 2

2

/ (VaN2 v 2

2

), ... , 

indicates a thermal average, q  is the particle charge, and A  

includes the terms of Eq. (17). Here, zg = k g  where g  is 

the gyration radius and k  the perpendicular wave-vector, 

and zb = [(krrd )
2
+ (m d + n d )

2 ]1/2  where (rd , d , d )  are the 

amplitudes which measure the extent of the particle 

excursion from the field lines in the course of a transit 

period, and (kr ,m,n)  are the radial wave-vector, the poloidal 

and the toroidal mode-number. The gyro- and bounce-related 

Bessel functions quantify the modification of the field-

particle coupling due to drifts and the magnetic modulation 

of 
 
v  by the magnetic well [31]. In the followings we assume 

a < g  for both species, and therefore neglect effects from 

all gyro-harmonics except 
 
g = 0 . It should be noted, 

however, that the pseudo-thermal ansatz limits the validity of 

the operator, and thus of Eq. (19), to strictly stable plasmas. 

A turbulent generalization of the operator would be required 
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to remove this limitation, and obtain a truly self-consistent 

transport theory of strongly turbulent, inhomogeneous 

plasmas [32]. 

3.2. Momentum Flux and Source 

 Starting with Eq. (19), the momentum flux and the 

momentum source have been evaluated in Ref. [22] and Ref. 

[23], respectively, and therefore we report here only the final 

results. Introducing as expansion parameter the inverse scale 

length of the equilibrium quantities (density, temperature and 

safety factor) normalized to the electron (poloidal) gyro-

radius, 
 

e,pA 1 ,  where A  can be AN, j ,AV, j ,AT, j  (with 

j=e,i) or Asaf (dqsaf / dr) / qsaf  (note that we assume  A 1  

and thus 
 
e,p ), the O(1)  electron-ion momentum flux 

and source are, respectively, 

 

ei
V = 3

Lei
Ne

d(MeNeV e )

dr
 

 

+MeNeV e 2
Ti
Te

3

2

1

qsaf

dqsaf

dr
+

1

Ni

dNi

dr
+

1

Ti

dTi
dr

  (20) 

 

(rB0t )Uei
V = 3

Lei
Ne

Ti
Te

1

qsaf

dqsaf
dr

d(MeNeV e )

dr
 

+MeNeV e 5
1

qsaf

dqsaf

dr
+

1

Ni

dNi

dr
+

2

Ti

dTi
dr

 .       (21) 

 The transport coefficient is defined by  

L12 = ra
p2 N1bt

2DRR (1, 2) , 

 with  

DRR (1, 2) = vth,1(vth,1 / b,M )[vth,2
2 / | v 2 |

2 ]  

 
b2 (2)[J0

2 (zg,1 )J0
2 (zg,2 ) / zb,M ] ,  

where zb,M  is the maximum between zb,e  and zb,i . Using 

 
vth,e / b,M qsaf R0  and 

 
| v 2 |

2 = vth,i
2

, we see that DRR (e, i)  

is a generalized Rechester-Rosenbluth coefficient [14]. It is 

necessary to make a specification. The subscript “ei” 

attached to the flux and the source means “electron flux (or 

source) due to the fluctuation spectrum induced by the ion 

species”. We are therefore neglecting the “ee” contributions, 

i.e., ee
V

 and Uee
V

, which in principle could be nonzero (only 

the volume-integrated “ee” source is zero). Because of the 

use of the pseudo-thermal ansatz for the fluctuation 

spectrum, however, the theory loses its level of refinement 

that would allow us to derive correct expressions for the “ee” 

contributions. We leave to future work the attempt to remove 

this limitation of the theory. In general, this could be done 

only through a self-consistent evaluation of the turbulent 

spectrum, a procedure that would lead to a truly turbulent 

version of the gBL collision operator. 

 Let’s briefly discuss the various terms, starting with the 

flux, Eq. (20). The first contribution is a diagonal term which 

represents MHD effects. In the remaining off-diagonal 

terms, the dependence on the gradient of the electron density 

dropped out, leaving only the drives proportional to the ion 

thermodynamic forces, and the additional drive proportional 

to the magnetic profiles. These off-diagonal terms represent 

pure kinetic effects. The drive involving the safety factor 

contains a coefficient depending on the relative magnitude of 

the electron and ion temperatures, and is the only term which 

can give, for canonical N  and T  profiles, an inward 

contribution depending on the electron and ion temperatures 

and on the shape of qsaf . For example, in normal magnetic 

shear discharges ( qsaf  monotonically increasing with r ), a 

momentum pinch is obtained for Ti /Te < 3 / 2 , a condition 

which is likely to be verified in most discharges. The 

existence of off-diagonal terms in the momentum transport 

matrix has been postulated theoretically and studied 

experimentally. For example, in Ref. [33], measurements of 

the toroidal rotation velocity profiles for discharges with 

neutral beam injection have led to the conclusion of the 

existence of a non-diffusive momentum transport tied to the 

gradient of the temperature. Similarly to that reference, our 

results exclude a non-diffusive drive due to the electron 

density gradient. Differently to that reference, however, we 

find the possibility of a momentum pinch driven by the 

magnetic configuration. This is similar to what suggested in 

the context of particle pinches, where turbulent equipartition 

or other approaches have put in evidence inward fluxes 

driven by the gradient of qsaf . Looking at the source, Eq. 

(21), we see that the only notable difference with respect to 

the flux is the overall proportionality to the safety factor 

gradient, so that a significant momentum source is possible 

only for large magnetic shear. 

4. TURBULENT ELECTRIC FIELD 

 To derive the turbulent contribution to the electric field 

we consider the electron momentum balance Eq. (18), where 

the flux and the source are reported in Eqs. (20) and (21), 

respectively. For simplicity, in the followings we assume no 

ion drift velocity, 
 
V i = 0 , and approximate the electron 

velocity as 
 
V e j / (eNe ) . From the passing-electron 

version of Eq. (17) we then obtain, after a division by 

VaeNe , 

Me

e2Ne

j
r

t
+

NeEt r

Ne

= neo j Ebs + E
turb  .       (22) 

 On the right-hand-side (RHS) we have added the 

neoclassical resistive term and the neoclassical bootstrap 

term, Ebs dp / dr , p  being the total equilibrium 

pressure. 

 Before giving the expression for the anomalous 

contribution 
 
Eturb

, it is convenient to express Eqs. (20) and 

(21) more succinctly as 

ei
V == Lei ˆ 1

ei MeV e

e,p

Lei ˆ 2
eiMe

dV e

dr
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and 

(rB0t )Uei
V = LeiÛ1

ei MeV e

e,p
2 LeiÛ2

ei Me

e,p

dV e

dr
 ,  

where we have introduced the following non-dimensional 

radial functions 

ˆ
1
ei = 3 e,p

1

pe

dpe
dr

+
1

pi

dpi
dr

2
Ti
Te

3

2

1

qsaf

dqsaf

dr
 , 

 ˆ
2
ei = 3,

 (23) 

Û1
ei =15 e,p

2 1

qsaf

dqsaf
dr

2

Ti
Te
+ 3 e,p

2 1

qsaf

dqsaf
dr

Ti
Te

1

Ne

dNe

dr
+
1

Ni

dNi

dr
+
2

Ti

dTi
dr

,

      (24 

Û2
ei = 3 e,p

1

qsaf

dqsaf

dr

Ti
Te

 ,         (25) 

with the electron poloidal gyro-radius and gyro-frequency 

given by, respectively, e,p = vth,e / e,p  and 

e,p = eB0, / (cMe ) . In terms of the following additional 

functions, all proportional to the transport coefficients 

ei = MeLei / (e
2Ne )  and 

 
Lei / Ne = vth,eqsR0b

2
, 

1 = ei

e,p

ˆ
2
ei e,p

LNe

ˆ
1
ei  ,         (26) 

1
U =

1

Ne e,p

ei

e,p

Û2
ei e,p

LNe
Û1

ei  ,         (27) 

2 = ei
ˆ

2
ei  ,   2

U =
1

Ne e,p
eiÛ2

ei  ,         (28) 

where LNe
1 (1 / Ne )(dNe / dr) , we finally express the 

turbulent electric field as 

E turb =
1

Ne

1

r r
r 1 j 2

dj

dr
+ 2

U dj

dr 1
U j  .      (29) 

 As the superscripts  and U  indicate, the first term 

originates from the momentum flux, while the second 

contribution originates from the momentum source. The 

latter is a result of the self-consistency of the theory, and 

would be missing in the more conventional quasi-linear 

approach. It is not a true source term, since it is proportional 

to either the current density or its derivative. In this respect it 

is similar to the neoclassical bootstrap electric field, 

Ebs neo (T / Bp )(dn / dr)  where the poloidal magnetic field 

is Bp ( drrj) / r . 

 To make contact with results obtained in the framework 

of mean-field MHD [18, 19], we manipulate the expression 

(29) for the turbulent electric field so to isolate the helicity-

conserving hyper-resistivity term, obtaining 

 

E turb = an j +
dj

dr

1

B0r

d

dr
r h

d

dr

j

B0

 ,       (30) 

where B0  is the total equilibrium magnetic field, and where 

the three transport coefficients are defined by 

an

1

B0r

d

dr

r 2

Ne

dB0

dr
+

1 + r(d 1 / dr)

Ner
1
U  ,       (31) 

2

NeLNe
+

1

Ne

+ 2
U  ,         (32) 

and 

h 2B0
2 / Ne .           (33) 

 The last term in Eq. (30), proportional to the anomalous 

viscosity, or hyper-resistivity, h , originates from the 

momentum flux, and accounts for the tendency of the 

turbulence to smooth out the perpendicular gradient of the 

parallel current density. Since the magnetic turbulence (and 

hence h ) vanishes at the boundary, this term is helicity 

conserving. Note that in a Taylor state [17], 

j / B0 = constant , so that the hyper-resistive term is driven 

by departures from a Taylor state. This term has been shown 

to be necessary to fit experimental current profiles in the 

central region of tokamak plasmas, profiles that despite the 

presence of bootstrap current (and/or edge current drive) 

remain non-hollow [34]. In pinches, the anomalous viscous 

term leads to toroidal field reversal at the plasma edge as 

observed [18]. The first term on the RHS of Eq. (30) is an 

anomalous resistive electric field. From the expression of the 

anomalous resistivity an , Eq. (31), and definitions (26)-

(28), we see that both the momentum flux and source 

contribute to an . Finally, the middle term in Eq. (30), 

proportional to the coefficient  and to the first derivative 

of the current density, is also due to both flux and source, as 

Eq. (32) shows. Contrary to the other two turbulent terms, it 

is non-dissipative in form. We will refer to this term as the 

“cross”-term, or the “cross”-resistivity contribution. 

 We conclude this section by showing the radial 

dependence of the three turbulent transport coefficients (31)-

(33). In order to do that, we need to specify the geometry, 

the magnetic field and the thermodynamic plasma profiles. 

We choose a = 71  cm and R0 = 240  cm, giving an aspect 

ratio of a / R0 = 0.295 . The electron and ion temperature 

profiles are modeled by Te = Ti = (Te,0 Te,a )(1 x2 ) T + Te,a  

where x = r / a , T = 2.0 , and where the boundary values 

are Te,a = 0.1  keV, Te,0 = 4.8  keV. The electron (and ion) 

density profile is given by 

Ne = Ni = (Ne,0 Ne,a )(1 x2 ) N + Ne,a  where N = 2.5 , 

Ne,0 = 2 1013  1/cm
3

, and Ne,a = 0.01 Ne,0 = 2 1011  
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1/cm
3

. The total (electron plus ion) pressure is 

p = pe + pi = 2TeNe . For the normalized (i.e., divided by the 

central value of the toroidal field Bz,0 ) perturbed magnetic 

field we adopt the model 
 
b2 = b0

2 (1 x2 )2.5  where 

b0
2 = 1 10 8

. Such a perturbation, being zero at the plasma 

edge, leads to an helicity-conserving hyper-resistive term. 

For all turbulent coefficients we use as a normalizing 

parameter cl , the cylindrical cross-section average of the 

classical resistivity cl = 4.77e
2Zeff ln / [Mevth,e

3 ] , where 

the ion charge and the Coulomb logarithm are assumed to 

be, respectively, Zeff =1  and ln = 17 . In a tokamak 

plasma, however, the classical resistivity must be modified 

to take into account toroidal effects. The result is the 

neoclassical resistivity, neo = cl / (1 1.95 r / R0 ) . For our 

parameters, this function is singular inside the plasma; to 

avoid complications not essential to the purpose of our work, 

in all numerical calculations we use the classical resistivity. 

To specify the equilibrium magnetic profiles we use the 

safety factor that is solution of the ohmic case presented in 

Sec. 6.1, and showed in Fig. (6) with a line with boxes. The 

non-dimensional hyper-resistive coefficient 

ˆ
h = h / (a

2Bz,0
2

cl ) , the non-dimensional cross coefficient 

ˆ
X = X / (a cl ) , and the non-dimensional anomalous 

coefficient ˆ
an = an / cl  are plotted in Figs. (1-3), 

respectively. All coefficients are zero at the outer boundary 

of the plasma, in virtue of the adopted shape of the magnetic 

perturbation. We see that, while both the hyper- and the 

cross-resistive contribution are positive, the anomalous 

resistivity is positive near the central region of the plasma, 

and negative in the outer region. Moreover, the absolute 

value of ˆ
an  is on average larger then the other two 

coefficients, even though it remains smaller than that of the 

classical resistivity. As noted before, while the hyper-

resistive coefficient ˆh  originates from the momentum flux 

, the remaining two coefficients contain both a momentum 

flux and a momentum source contribution, a result of the 

self-consistency of our theory. To clarify the origin of the 

negative values of the anomalous resistivity, we compare the 

parts of ˆ
an  proportional to the flux with the one 

proportional to the source: 

an,1

1

B0r

d

dr

r 2

Ne

dB0

dr
 ,   

an,2
1 + r(d 1 / dr)

Ner
 ,   an,3 1

U  .

 

 In Fig. (4) we plot an,2  (dashed-line) and an,3  (solid-

line). The function an,1  has a much smaller amplitude and 

therefore is not shown. We find that the major contribution is 

given by an,2  and therefore by the momentum flux. an,2   

 

 

Fig. (1). Radial profile of the hyper-resistivity, ˆh . 

 

Fig. (2). Radial profile of the cross-resistivity, ˆ . 

 

Fig. (3). Radial profile of the anomalous resistivity, ˆan . 
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has also the feature of changing sign at around  x 0.6 , 

while an,3 , which originates from the momentum source, is 

always positive. The possibility of negative anomalous 

resistivity has been pointed out in several works adopting the 

MHD approach [9]. In our model, the sign of it depends on 

the details of the equilibrium thermodynamic ( N ,T ) and 

magnetic ( qsaf ) profiles, as can be inferred from Eqs. (23)-

(25). 

 

Fig. (4). ˆ
an,2  (dashed-line) and ˆ

an,3  (solid-line) anomalous 

resistivity profiles. The horizontal line at zero is for reference. 

5. TURBULENT OHM’S LAW 

 To investigate the effects of the turbulent contributions 

we carry out a numerical solution of Ohm’s law assuming 

the presence of densely-packed micro-tearing modes acting 

over the entire plasma cross section, with (normalized) 

perturbation profile of the form 
 
b2 = b0

2 (1 x2 )2.5  where 

 
b0
2 = 1 10 8

. The model to solve is given by the equation 

 
E0 = neo j jbs( ) + Eturb

 or, using Eq. (30), 

 

E0 = neo jbs + ( neo + an ) j +
dj

dr

1

B0r

d

dr
r h

d

dr

j

B0

 ,  (34) 

together with the following expression for the neoclassical 

bootstrap current [35-39]: 

jbs = cF13
r

R

1/2
ne (Te + Ti )

B

1

ne

dne
dr

c
r

R

1/2
neTe
B

 

3

2
F13 F23

1

Te

dTe
dr

3

2
y F13

Ti
Te

1

Ti

dTi
dr

 ,  (35) 

where 

Fm3 =
Km3

[1+ am3 e*
1/2

+ bm3 e* ][1+ cm3 e*(r / R)3/2 ]
 ,    m = 1, 2 ,  

y =
1.31(1+1.65 i*

1/2 )

1+ 0.862 i*
1/2  ,  

j* =
BzR

3/2

j r
1/2B (Tj / mj )

1/2  ,     j = e, i ,  

the classical e-i and i-i collision times are  

e = 3me
1/2Te

3/2 / [4(2 )1/2 ln enee
4Zeff ] , 

i = 3mi
1/2Ti

3/2 / [4 1/2 ln inie
4 ] , and where for Zeff =1  the 

K ‘s and the a,b, c ‘s are K13 = 2.30 , K23 = 4.19 , 

a13 = 1.02 , a23 = 0.57 , b13 = 0.75 , b23 = 0.38 , c13 = 1.07  

and c23 = 0.61  [37]. The frequency *  represents the ratio of 

the effective collision frequency to the bounce frequency, 

and is a measure of the collisionality of the plasma. There 

are three main collisionality regimes: banana (collisionless), 

plateau (transition) and Pfrisch-Schlüter (collisional), 

approximately delineated by the relations: 
 * 1  (banana), 

1 * 1 / 3/2
 (plateau), and * 1  (collisional). The 

bootstrap current is diminished as the plasma becomes more 

collisional, because the banana orbits are more and more 

impeded. In our case we obtain an average value of e*  of 

about 0.05 , therefore indicating a banana regime. Eq. (34) is 

nonlinear, because the parallel current density is related to 

the poloidal component of the magnetic field via Ampere’s 

law, (4 / c) j (1 / r)( / r)rB , and B  appears in the 

expression for the bootstrap current (35). In the numerical 

solution, the bootstrap term is therefore treated using an 

iterative procedure. 

 Ohm’s law Eq. (34) represents a steady-state balance 

between momentum gain and momentum loss on the part of 

the charge carriers, and its numerical solution provides the 

parallel current density profile in the finite-pressure, relaxed 

state of the system. Its study is especially relevant in 

connection with the idea of achieving steady-state operation, 

in which all or a large fraction of the current is due to the 

bootstrap effect [3, 4, 39]. The question is, whether or not 

the turbulent contributions in Ohm’s law can provide the 

necessary current diffusion and profile re-adjustment so to 

generate the needed current seed on axis. To our knowledge, 

all studies carried out so far have considered only the hyper-

resistive term. On the contrary, our Ohm’s law Eq. (34) 

contains, besides the usual hyper-resistive term, the other 

two terms proportional to an  and . According to our 

theory, all these terms are effective in the presence of 

magnetic turbulence, and thus must be retained. The 

transport coefficients present in these three terms depend 

strongly on the plasma profiles, as definitions (31)-(33) 

show. An appropriate study of the influence of their 

corresponding terms on the evolution of plasma discharges 

should be done by considering a transport code which 

couples the turbulent Ohm’s law to the evolution equations 

for the density and energy. In the present work, however, we 

limit ourselves to a much simpler application of the theory, 

i.e, we use Eq. (34) to calculate the steady-state current 

profile in a (cylindrical) tokamak for fixed pressure 

equilibrium profiles, and for a fixed level of magnetic 

turbulence. 

 To shed light on the physical meaning of the various 

terms in Eq. (34) we derive an energy balance by 

multiplying the equation by 
 
r j  and then integrating it from 

zero to a , following the procedure adopted in Ref. [4]. We 

obtain the following power balance 
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0

a
dr r j E0

+ a h

j

B0

d

dr

j

B0

1

2
j2

r=a

 

=
0

a
dr [ neo + an ]r j2

+
0

a
dr r h

d

dr

j

B0 (r)

2

 

 
0

a
dr r j neo jbs +

1

2r

d[r ]

dr
j  ,         (36) 

where each term represents power per unit length of the 

torus. As seen before, for the chosen equilibrium profiles, all 

the  transport coefficients are positive everywhere in the 

plasma, except for an  which is positive in the inner and 

central region, and negative near the outer edge. This fact 

leads to the following considerations on the various 

contributions to the power balance. The two terms on the 

LHS represent externally injected power. The first 

contribution is positive and represents the work done by the 

electric field driven by the induced loop voltage, and its 

strength is controlled by 
 
E0

. The second term on the LHS is 

the power injected from the boundary surface ( r = a ) of the 

plasma (or, analogously, the injection of helicity), with an 

hyper-resistive contribution proportional to the derivative of 

the current density - so that it can be positive or negative, in 

the latter case meaning recharging - and an additional term, 

always negative, proportional to the squared current density. 

In all our simulation 
 
j (a) 0 , and therefore this boundary 

term is negligible. The first term on the RHS represents 

internal power dissipation (or generation) due to neoclassical 

and anomalous effects. Anomalous current generation would 

be in principle possible if the equilibrium profiles are such to 

make neo + an < 0 . From Fig. (3) we see that the 

anomalous resistivity is negative on the outer region of the 

plasma. However, the current density is small on the same 

region, so that overall the anomalous term dissipates current, 

and neo + an > 0  everywhere. The second term on the RHS, 

which is positive definite, represents the additional power 

dissipation associated with hyper-resistive current diffusion. 

The last term on the RHS is the work done by the diffusion-

driven (bootstrap) electromotive force, incremented by a 

turbulent contribution that is also negative over most of the 

plasma (see Sec. 6.4). Means to alleviate the requirement of 

a loop voltage reside on the boundary term on the LHS, and 

on the last integral term on the RHS containing the bootstrap 

and the cross contribution. In principle, these two terms 

could balance the remaining dissipative terms on the RHS, 

removing any need of externally supplied power and thus 

realizing steady-state operation. 

 As stated before, in all numerical studies presented in the 

next section the boundary term in Eq. (36) is equal to zero. 

This contribution can however be made nonzero in 

experiments, for example by producing a current sheath at 

the surface of the plasma using an external dc low-energy 

electron beam [40]. Due to the anomalous diffusion of the 

current, this edge current would diffuse toward the plasma 

center (and possibly amplified), and contribute to the 

sustenance of the plasma current against resistive dissipation. 

The advantage of this approach consists on the avoidance of 

more expensive, low efficiency current drive mechanisms 

such as radio-frequency. 

6. NUMERICAL SOLUTION OF THE CURRENT 
EQUATION 

 To proceed with the numerical solution of Eq. (34), we 

introduce x r / a  and non-dimensionalize the relevant 

quantities as follows (an over-hat means non-dimensional): 

 
ĵ = 4 aj / (cBz,0 ) , 

 
Ê0 = 4 aE0 / ( clcBz,0 ) , P̂ = P / Bz,0

2
, 

B̂ = B / Bz,0 , ˆ
neo = neo / cl , ˆ

h = h / (a
2Bz,0

2
cl ) , 

ˆ = / (a cl ) , ˆ
an = an / cl , where the cross-section 

averaged classical resistivity is cl = 0.1423796 10 16
 s, 

and Bz,0  is the toroidal field (that we assume constant and 

equal to 4 104  G). The equation to be solved for the 

parallel current density is then 

 

D̂2 (x)
d 2 ĵ (x)

dx2 + D̂1(x)
dĵ (x)

dx
+ D̂0 (x) ĵ (x)

=
D̂ 1(x)

dx'  x'  ĵ (x' )
+ Ê0 (x) 

,       (37) 

with coefficients 

D̂2 (x; h ) =
ˆ
h

B̂0
2

,         (38) 

D̂1(x; h , ) = ˆ +
1

B̂0
2

1

x

d(x ˆ
h )

dx
+

2 ˆ
h

B̂0

dB̂0

dx
 ,  

D̂0 (x; neo , an ) = ˆ
neo +

ˆ
an +

1

B̂0
3

1

x

dB̂0

dx

d(x ˆ
h )

dx
+ ˆ

h

2

B̂0

dB̂0

dx

2

+
d 2 B̂0

dx2

 ,  

D̂ 1(x; neo ) = 4 ˆ
neo

a

R0

1/2

x3/2  

F13
ne[Te + Ti ]

Bz,0
2

1

ne

dne
dr

+
neTe
Bz,0
2  

3

2
F13 F23

1

Te

dTe
dr

3

2
y F13

Ti
Te

1

Ti

dTi
dr

 .  (39) 

 The contributions to D̂1  and D̂0  that are proportional to 

the radial derivative of the equilibrium magnetic field can be 

expanded in terms of the small parameter 

 
B0,p / B0,z a / R0 . We obtain 

D̂1 = ˆ 1

B̂0,z
2

1

x

d(x ˆ
h )

dx
+

1

B̂0,z
2

2 ˆ
h

2

L̂p,1

1

B̂0,z
2

1

x

d(x ˆ
h )

dx
2
+O( 4 ) ,  
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D̂0 = ˆ
neo +

ˆ
an +

1

B̂0,z
2

1

x

d(x ˆ
h )

dx

2

L̂p,1

+
1

B̂0,z
2

ˆ
h

2

L̂p,2

+O( 4 ) .  

 Here, 1 / L̂p,1 (1 / B̂0,p )(dB̂0,p / dx)  and 

1 / L̂p,2 (1 / B̂0,p )(d
2 B̂0,p / dx

2 )  are lengths characterizing 

the radial variation of the poloidal field. To lowest order in 

, the model to be solved is given by Eq. (37) and the 

coefficients (38), (39), 

D̂1(x; h , ) = ˆ 1

B̂0,z
2

1

x

d(x ˆ
h )

dx
 ,         (40) 

and 

 D̂0 (x; neo , an ) = ˆ
neo +

ˆ
an  .         (41) 

 The nonlinear character of Eq. (37) is manifest in the 

integral term on the RHS, due to the dependence of the 

bootstrap current on the poloidal magnetic field. This term 

requires an iterative procedure for the numerical solution. 

Since the magnetic profiles are present in the D  coefficients 

as well, we had to include them in the iteration procedure to 

obtain a self-consistent result for the current density profile. 

The only equilibrium profiles that we keep constant during 

the numerical solution are the density and temperature 

profiles. 

6.1. Ohmic and Bootstrap Profiles 

 Setting ˆ
h = ˆ = ˆan = 0  (no turbulence), assuming 

Ê0 = 8.215 10 3
, and approximating 

 
ˆ
neo

ˆ
cl  in Eq. (37) 

(an approximation that will be used in all numerical 

calculations), the current diffusion equation reduces to 

ˆ
cl ĵ = D̂ 1 / x' ĵ (x' ) + Ê0

, and its solution comprises ohmic 

and bootstrap contributions. The profiles of the ohmic 

(boxes), bootstrap (crosses) and ohmic + bootstrap 

(triangles) current density profiles are shown in Fig. (5), 

while in Fig. (6) we plot the safety factor profile 

corresponding to the ohmic (boxes) and ohmic + bootstrap 

(triangles) cases. Integrating over the plasma cross section 

we obtain the following total currents: Iohm = 723 kA , 

Ibs = 95 kA , and I tot = Iohm + Ibs = 818 kA . The bootstrap 

current is about 12 %  of the total current. 

6.2. Add the Hyper-Resistive Contribution 

 The effect of the hyper-resistive term is well known. It 

induces a diffusion of the current density toward the center, 

and it is therefore fundamental in mitigating the hollowness 

induced by the bootstrap effect in advanced scenarios. All 

hypothesis of non-inductive, steady-state tokamak operation 

rely on this term. To study this hyper-resistive contribution, 

we solve Eq. (37) with ˆ = ˆan = 0 . We assume the 

boundary conditions 
 
ĵ (x =1) = 0  and 

 
ĵ' (x = 0) = 0 , 

therefore ignoring non-inductive helicity injection at the 

plasma edge. We initialize all terms depending on the 

magnetic profiles using the ohmic profiles found in Sec. 6.1.  

 

The new current density profile is shown with circles in Fig. 

(5). In all our numerical studies we have decided not to keep 

constant the total current, so to put in evidence turbulent 

dissipation and/or generation of current density. We obtain 

I tot = Iohm + Ibs + Ih = 768 kA . The reduction in current with 

respect to the case of Sec. 6.1 is 6.1 % . The effect of the 

hyper-resistive term is therefore twofold: a smoothing out of 

the central current density profile, and a dissipative reduction 

of the overall current. 

 

Fig. (5). Ohmic (boxes), bootstrap (crosses), ohmic + bootstrap 

(triangles), and ohmic + bootstrap + hyper-resistivity (circles) 
current density profiles. 

 

Fig. (6). Ohmic (boxes) and ohmic + bootstrap (triangles) safety 
factor profiles. 
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6.3. Add the Remaining Anomalous Contributions 

 We proceed by adding to the run of Sec. 6.2 

(ohmic+bootstrap+hyper-resistivity) the remaining two 

turbulent contributions. We begin with the anomalous 

resistivity by setting to zero only ˆ  in Eq. (37). The 

resulting current profile is presented with boxes in Fig. (7). 

The total current is reduced to 

I tot = Iohm + Ibs + Ih + Ian = 696 kA , a 9.3 %  reduction. The 

current is reduced mainly in the central part of the plasma, 

but there is also a small increase in the outer region due to 

the negative value of ˆan , as shown in Fig. (4). 

 

Fig. (7). Ohmic + bootstrap + hyper-resistivity (circles), ohmic + 

bootstrap + hyper-resistivity + anomalous resistivity (boxes), ohmic 

+ bootstrap + hyper-resistivity + cross-resistivity (triangles), and 

ohmic + bootstrap + hyper-resistivity + anomalous resistivity + 
cross-resistivity (crosses) current density profiles. 

 The effect of the turbulent cross-resistivity term is 

studied next by running the code setting to zero only ˆan . 

The resulting current profile is shown with triangles in Fig. 

(7), leading to a total current of 

I tot = Iohm + Ibs + Ih + I = 931 kA . We thus find that the 

addition of the cross turbulent term leads to a 21.2 %  

increase in the total current, so that this term represents 

turbulent current amplification. It is interesting to note that 

recent bootstrap current validation experiments carried out in 

the TCV tokamak concluded that the magnitude of the 

bootstrap current exceeds purely neoclassical prediction [6]. 

The TCV team attempted an explanation of this discrepancy 

by referring to effective diffusion due to potato orbits, and/or 

to turbulence. Our results show that the latter effect could 

indeed be relevant. 

 As a final step, we solve the complete equation (37). The 

resulting current density profile is shown with crosses in Fig. 

(7), while in Fig. (8) we present the corresponding safety 

factor profile (circles) (for comparison, we report with boxes 

also the safety factor profiles of the ohmic + bootstrap + 

hyper-resistive case). The total current for this final run is 

I tot = Iohm + Ibs + Ih + Ian + I = 832 kA , a 1.7 %  increase 

with respect to the neoclassical result of Sec. 6.1, and a 
8.4 %  increase with respect to the hyper-resistive case of 

Sec. 6.2. 

 

Fig. (8). Ohmic + bootstrap + hyper-resistivity + cross-resistivity + 

anomalous resistivity (circles) and ohmic + bootstrap + hyper-
resistivity (boxes) safety factor profiles. 

6.4. Energetics 

 We analyze further the results presented in Sec. 6.3, by 

evaluating the various terms of the power balance (36): 

TE +
0

a
dr r E0  j  ,  

 

Ta a h

j

B0

d

dr

j

B0

1

2
j2

r=a

 ,  

 

Tneo +
0

a
dr neo r j

2  ,  

 

Tan +
0

a
dr an  r j

2  ,  

 

Th +
0

a
dr r h

d

dr

j

B0

2

 ,  

 

Tbs 0

a
dr r neo jbs  j  ,  

T
1

2 0

a
dr 
d(r )

dr
j2  .  

 Adopting the units W/cm, for the LHS of Eq. (36) we 

obtain TE = 6.253  and Ta = 0 . The first three contributions 

on the RHS are all positive, representing dissipation: 

Tneo = 8.615 , Tan = 0.168  and Th = 0.360 . The hyper-
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resistive contribution Th , is responsible of the reduction of 

the hollowness of the current density at the plasma center 

when bootstrap current is relevant. The last two terms, one 

proportional to neo jbs  and the other to , are negative and 

of comparable magnitude ( 1.165  and 1.726 , 

respectively), representing internally generated power. The 

second one, due to the presence of turbulence, represents 

therefore an important contribution to non-inductive current 

generation. Since an interesting output of our analysis is 

given by this “turbulent bootstrap” term, we have looked at 

the integrand of T , finding out that it is negative 

everywhere in the plasma, except for a very small region 

near the edge. 

7. SUMMARY AND CONCLUSIONS 

 The control of the current density profile is a key task in 
tokamak plasma experiments aimed at defining advanced 
regimes, in which the synergistic combination of improved 
confinement and of a large fraction of bootstrap current 
minimizes the need for external current drive. For this 
reason, the derivation of generalized versions of Ohm’s law 
that include both neoclassical and turbulent effects becomes 
essential. Using the self-consistent action-angle transport 
theory, we have derived a turbulent version of Ohm’s law 
which is valid in magnetized axisymmetric plasma with a 
background of magnetic turbulence, such that induced by 
micro-tearing modes. We have performed numerical studies 
to understand the role of turbulence in shaping the steady-
state current profile. Although the results presented in this 
paper have been derived using a particular model of 
turbulent transport, many turbulent theories lead to results 
that are formally equivalent, and thus we believe that our 
results can be given a qualitative, if not a quantitative, 
significance. 

 The extended Ohm’s law (34) includes the well-known 

hyper-resistive term, the diffusive effect of which ultimately 

allows for the radial diffusion of the bootstrap current toward 

the plasma center. Besides the hyper-resistive term, Eq. (34) 

contains two other turbulent contributions, the anomalous 

resistivity term, and a “cross”-resistivity term. The 

anomalous resistivity contribution leads to a significant 

reduction of the current density in the central part of the 

plasma, and to a small increase in the outer region. This is 

due to a radial profile of the anomalous resistivity that 

becomes negative for x 0.6 . Our results confirm the 

possibility of negative turbulent anomalous resistivity, a fact 

that according to our transport model is due to the combined 

effect of the thermodynamic and magnetic equilibrium 

profiles. The remaining turbulent term, the cross-resistivity 

term, leads to a significant increase of 
 
j  everywhere in the 

plasma. It is therefore a turbulent bootstrap contribution, and 

could be a candidate for the explanation of observed 

discrepancies between the theoretically predicted bootstrap 

current and the measured one. In our simulation, the increase 

in total current when going from the ohmic + bootstrap + 

hyper-resistive case to the ohmic + bootstrap + hyper-

resistive + cross-resistive case is about 20% . Most of this 

current increase is however compensated by the effect of the 

anomalous resistivity term, so that the increase in total 

current when adding all the turbulent contributions to the 

neoclassical case (ohmic + bootstrap only) is reduced to only 

1.7 % . 

 In conclusion, the main indication that can be drawn 

from our work is that anytime the hyper-resistivity is 

included in the modeling of the current density, additional 

turbulent terms must be included as well. These additional 

turbulent contributions could play a determinant role in 

explaining experimental current density profiles, and can be 

of help in addressing the many questions raised by the study 

of advanced tokamak regimes with a high bootstrap current 

fraction. The numerical solution of the particular turbulent 

transport model presented in this paper has shown, for 

example, that one of the turbulent terms (the cross-resistivity 

term) is analogous to a turbulent bootstrap effect, as it leads 

to an increase of the total plasma current. 

 Our work could be expanded in several directions, with 

the general goal of removing some of the limitations of our 

approach. First, we have adopted an arbitrary profile for the 

magnetic perturbation. Additional studies should be carried 

out by coupling the Ohm’s law with a stability code, and 

modeling the magnetic perturbation profile according to the 

output of the stability analysis. Approaching the problem 

from another direction, it should be interesting to look for 

the magnetic perturbation profile that leads to the best fit of 

current density experimental data. Second, it is well known 

that the current density profile itself plays an important role 

in the global stability properties of the plasma. When a large 

fraction of the current is due to bootstrap, i.e., owns its 

existence to the pressure gradient, then the mutual interaction 

between current and thermodynamic profiles must be taken 

into account self-consistently. This has not been done here, 

and should be addressed by coupling the Ohm’s law to a 

transport code evolving the equilibrium profiles. Finally, our 

code could be used to investigate the effects associated to the 

boundary term in the power balance, Eq. (36). In all 

computations we have set 
 
j = 0  at the plasma outer 

boundary. Thanks to turbulent diffusion, however, a nonzero 

current at the plasma edge could potentially sustain a 

significant fraction of the plasma current. 
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