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Abstract: Maternal exposure to tobacco smoke is known to have deleterious effects on the developing fetus, but it has 

only recently been shown that there may be life-long consequences due to genotoxic damage. Analysis of newborn cord 

bloods with the GPA somatic mutation assay demonstrates a significant effect of maternal active smoking and suggests 

that similar mutational induction occurs in mothers who experience only secondary exposure to environmental tobacco 

smoke (ETS). Moreover, in both cases, mutational induction occurs by the same molecular mechanism, likely 

chromosome missegregation, resulting in an effective loss of one parental chromosome 4 and duplication of the other. 

These data also suggest that quitting smoking during pregnancy without actively avoiding secondary ETS exposure is not 

effective at protecting the unborn child from the genotoxic effects of tobacco smoke. 
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INTRODUCTION 

 Exposure to tobacco smoke metabolites is associated 
with cancer in the adult and teratogenicity in utero [1], but it 
has been difficult to document a mutagenic effect in the 
newborn. Recently, we found that the choice of control 
population was critical, in that passive tobacco smoke 
exposure amongst our “non-smokers” induced the same level 
of mutation at the HPRT gene in newborns as did active 
maternal smoking, and confounded the overall analysis of 
smoking effects [2]. We also found a similar induction of 
cord blood mutations in the children of mothers who quit 
smoking after they became aware that they were pregnant. 
However, we cautioned that these results were based upon a 
single X-linked reporter locus. We now present results that 
extend these observations to a second, autosomal, reporter 
gene, confirming a significant effect of active maternal 
smoking and again suggesting that quitting smoking during 
pregnancy without actively avoiding secondary exposure to 
environmental tobacco smoke (ETS) has no protective effect 
on the developing fetus. 

MATERIALS AND METHODOLOGY 

 The glycophorin A (GPA) human in vivo somatic 
mutation assay is based on the autosomal gene coding for the 
MN blood group. In GPA

M/N
 heterozygotes, the standard 

flow cytometric GPA assay quantifies allele loss at the M 
allele and allows for the phenotypic characterization of 
mutant erythrocytes as arising due to either simple allele loss 
(N/Ø mutants) or concomitant allele loss-and-duplication 
(N/N mutants) [3]. For this study, we reanalyzed our own 
published data (N = 114) that had concluded that there was 
no effect of maternal tobacco smoking on their offspring, 
because the children of active smokers exhibited GPA  
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mutation frequencies (Mf) not significantly different from 
those of “non-smoking” mothers (P = 0.14), a group in 
which more than half (59%) reported extensive long-term 
secondary exposure [4]. Since the reanalysis involved a 
unique stratification of the maternal/fetal population, we 
confirmed that the new groups were well matched with 
regard to demographics and lifestyle factors. In particular, 
average maternal ages ranged only from 22.8 to 24.0 years 
amongst the four exposure groups, and all groups were 
predominantly Caucasian, with successively smaller 
proportions of Hispanics and African-Americans. The only 
demographic factor previously associated with GPA 
mutation frequency, age [5], is obviously not relevant to a 
comparison of newborns. 

RESULTS 

 Table 1 shows a comparison of the GPA Mf of children 
whose mothers smoked throughout pregnancy, quit during 
pregnancy or experienced exposure to ETS throughout their 
pregnancy with those of children whose mothers reported no 
primary or secondary exposure during their pregnancy. Both 
the combined exposed group and the primary smoking group 
(the single largest subset) had significantly higher total GPA 
Mf than the unexposed group. Although they were not 
individually significant, the total GPA Mf of the children of 
mothers who quit smoking during pregnancy and those who 
reported only passive exposures were elevated such that they 
were not significantly different from those of the children of 
active smokers (P = 0.84, 0.85, respectively). 

 Perhaps surprisingly, separation of the total GPA Mf into 
their mechanistic components reveals that most of the 
mutagenic effects of tobacco smoke in this study are 
manifested in the allele loss-and-duplication category, which 
is primarily associated with chromosomal rather than gene-
specific molecular events (recombination and missegre-
gation) [7]. Tobacco smoke exposure has usually been 
associated with induction of gene-specific “point” mutations 
[8], although these accounted for only 25% of the newborn 
mutations summarized in the original report [4]. While none 
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of the exposed groups exhibited significantly elevated 
frequencies of simple allele loss mutants, for loss-and-
duplication mutants the probabilities of significance of all 
comparisons between exposed populations and unexposed 
controls improved over the result with total GPA Mf, 
although, once again, only primary maternal smoking was 
lower than 0.05. As was observed with the total GPA Mf, the 
N/N Mf of the three tobacco exposed groups were not 
significantly different, and, combined, were significantly 
higher than the unexposed group. 

DISCUSSION 

 Overall, our findings of significant induction of prenatal 
mutation at the GPA locus associated with maternal smoking 
largely reiterate our previous findings with the only other 
widely applied human somatic mutation assay, the HPRT 
assay [2]. Although this strengthens the evidence for the 
transplacental genotoxicity of maternal tobacco smoke, both 
active and environmental, these assays should be considered 
as complementary tests, in that they reflect somewhat 
distinct mechanisms of mutagenicity. Although loss of 
HPRT activity is not considered inviable at the cellular level, 
there is convincing evidence for age-related selection against 
HPRT-deficient cells at the organismal level [9,10], as well 
as clear restrictions on mechanisms, such as chromosome 
loss and deletion, that affect adjacent genes and genetic 
material [11]. On the other hand, the HPRT gene has cryptic 
VDJ recombinase recognition sequences that direct specific 
removal of exons 2 and 3, making this gene a reporter for 
mutations occurring due to “illegitimate” recombinase 

activity [12]. So, whereas gene-specific mutations are the 
major detectable lesion at the HPRT gene, including those 
occurring via illegitimate VDJ recombination, such 
“classical” mutations appear to contribute negligibly to 
mutation (or “loss of heterozygosity”) at autosomal loci such 
as GPA [13]. Instead, the major mechanisms of “mutation” 
at such loci have been found to be chromosome 
missegregation [14], epigenetic gene inactivation [15] and 
homologous recombination [16]. 

 In previous studies of in utero mutation at the HPRT 
locus in cord blood T-lymphocytes, we found that tobacco 
smoke exposure, both primary and via ETS, resulted in 
increased frequencies of both small, non-structural mutations 
(assumed to be point mutations) and those caused by 
illegitimate VDJ recombination, a mechanism that should 
not be possible in other cell-types, such as the erythroid 
lineage that uniquely expresses GPA [2,17,18] (or in 
amniocytes, despite a recent study [19]). We specifically did 
not observe an increase in structural mutations caused by 
random chromosomal deletions or rearrangements. While the 
increase in allele loss-and-duplication mutants observed in 
this study may have occurred by homologous recombination 
or chromosomal missegregation [7], the concurrent HPRT 
assay results [2] suggest that generalized recombination is 
not affected by tobacco exposure. Chromosomal 
missegregation, however, cannot be detected at the 
hemizygous X chromosome-linked HPRT locus, and recent 
studies have shown that tobacco smoke does affect 
chromosomal segregation [20]. Another recent study also 
found that maternal tobacco smoke exposure was associated 

Table 1. GPA Mf in Newborns with and without Exposure to Tobacco Smoke Metabolites in Utero 

 

GPA Mf (x 10
-6

) 
Maternal Exposure  N 

Mean ± SD Median  Range 

P
1
 P

2
 

a) Total GPA Mf
3
 

unexposed 14 5.3 ± 2.6 4.7 0.14—1.9   

passive only 20 6.6 ± 2.7 6.2 3.2—13.6 0.086  

quit during pregnancy 11 7.0 ± 4.14 6.8 3.2—16.4 0.22  

smoked throughout 48 6.8 ± 3.15 6.3 2.4—18.0 0.049 0.042 

b) GPA N/Ø Mf 

unexposed 18 3.6 ± 2.6 2.9 0.8—12.2   

passive only 26 4.0 ± 2.3 3.7 1.2—10.2 0.35  

quit during pregnancy 12 4.0 ± 2.3 3.4 1.4—8.4 0.51  

smoked throughout 58 4.1 ± 2.1 4.1 0.4—10.4 0.25 0.25 

c) GPA N/N Mf
3
 

unexposed 14 1.7 ± 0.92 1.8 0.6—3.4   

passive only 20 2.6 ± 1.4 2.3 0.2—5.4 0.061  

quit during pregnancy 11 3.0 ± 2.74 2.8 0.6—10.2 0.089  

smoked throughout 48 2.9 ± 2.25 2.8 0.1—13.8 0.0166 0.0146 

1Specific exposed group vs unexposed GPA Mf, Mann-Whitney U test 
2Combined exposed groups vs unexposed GPA Mf, Mann-Whitney U test 
3Excluding babies of mothers with NN blood type 
4Excluding outlier with GPA N/N Mf of 231.5 x 10-6 
5Excluding outlier with GPA N/N Mf of 63.9 x 10-6 
6Statistically significant (P < 0.05) after adjustment for multiple comparisons [6]. 
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with higher GPA mutation frequencies [21]. In this study, 
however, the effect was confined to the allele loss class of 
mutations, which may also occur by chromosome 
missegregation (simple non-disjunction), or by the same type 
of classical point mutations observed at the HPRT locus. We 
have previously found that sorting out mechanisms in such 
systems depends on comparing the relative frequencies of 
mutations of different types [2,22], and, unfortunately, this 
study did not provide a detailed analysis of GPA Mf. 

 In our previous report, we suggested that the maintenance 
of high mutation levels in the children of women who quit 
smoking during pregnancy might be associated with ongoing 
passive exposure. Indeed, in the present study, all but one 
woman who quit smoking during pregnancy reported 
ongoing secondary exposure in the home or workplace 
throughout her pregnancy. Once again, we have categorized 
a population based on their primary smoking habits without 
regard for passive exposure. If the women with such ongoing 
passive exposure who quit actively smoking during 
pregnancy are added to the passive exposure only category, 
such passive exposure results in a statistically significant 
induction of GPA allele loss-and-duplication Mf (P = 0.033). 

 Of course, these GPA data were generated from a subset 
of the mother/daughter pairs previously analyzed for in utero 
mutation at the HPRT locus [2,4], with limitations on both 
the overall population size, and the size of the stratification 
classes, particularly the unexposed controls. Also, unlike the 
HPRT mutation analysis, these subjects were all derived 
from the same population, mothers delivering at University 
Hospital in Denver, Colorado, USA, and therefore represent 
a geographically limited population of relatively low 
socioeconomic status. Possible confounding factors therefore 
include nutrition, other exposures (including radiation due to 
elevation), lifestyle and workplace, although none of these 
factors were associated with either HPRT or GPA Mf in the 
original study [4]. 

CONCLUSION 

 These data confirm and support, at a second, autosomal, 
locus, our previous finding that both active maternal 
smoking and passive maternal exposure to ETS induce 
similar levels and types of genotoxic damage to the 
developing fetus. Further, it is clear that quitting smoking 
during pregnancy alone is not sufficient to ameliorate the 
effects on the baby, since maternal secondary exposure 
causes the same level and same type of genetic damage as 
active smoking. 

 This study also reiterates the lesson that selection of a 
proper control population is critical to establishing smoking 
effects. Indeed, we suggest that any study that failed to 
demonstrate such a smoking effect without controlling for 
the possible effects of passive exposure is irredeemably 
confounded and can no longer be considered valid. 
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ABBREVIATIONS 

ETS = Environmental tobacco smoke 

GPA = Glycophorin A 

HPRT = Hypoxanthine-guanine phosphoribosyl transferase 

Mf = Mutation frequency (frequencies) 
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