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Abstract: Itch (pruritus) is one of the most often seen sensory phenomena in clinical practice. Recent neurophysiological 
findings proposed the existence of a novel pruriceptive system which includes a multitude of pruritogenic (itch-inducing) 
peripheral mediators, itch-selective pruriceptors, sensory afferent networks, spinal cord neurons, and certain central nerv-
ous system regions. In this review, we first introduce major features of the pruriceptive system. We then focus on defining 
the roles of transient receptor potential (TRP) ion channels in skin-coupled itch and provide compelling evidence that cer-
tain thermosensitive TRP channels (especially TRPV1, TRPV3, TRPV4, and TRPA1) are indeed key players in pruritus 
pathogenesis. Finally, we propose TRP-centered future experimental directions towards the therapeutic targeting of TRP 
channels in the clinical management of itch.  
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1. INTRODUCTION – THEORIES OF ITCH 

 Classically, itch (pruritus) is defined as an “unpleasant 
sensation that elicits the desire or reflex to scratch” [1]. Al-
though this definition has been standing the test of time, in-
tense research efforts of the last decades have significantly 
broadened our knowledge and reformed some of the basic 
concepts of pruritus. 

 Although both itch and pain are unpleasant sensations 
associated with protective motor responses, the phenomenon 
of itch clearly differs from that of pain in the subjective sen-
sation as well as the resulting motor activity. In spite of the 
resulted sensational differences, the itch processing “pruri-
ceptive” system (similar to the nociceptive system) can be 
characterized as an evolutionarily ancient neuronal network 
for the avoidance of potentially harmful agents (e.g. me-
chanical objects, insects, skin irritants, allergens, toxic 
plants) endangering the integrity of the body. With respect to 
its aim, the itch-induced scratching (defined as a goal-
directed movement against noxious agents that have success-
fully passed the skin barrier and have already invaded the 
organism) can be compared to the withdrawal reflex evoked 
by painful stimuli. However, the appearances of these two 
motor responses are quite distinct and they represent differ-
ent strategies of protection [2-4]. Due to the intimate rela-
tionship of itch and pain sensations (see below), the distinc-
tion between the pruri- end nociceptive systems is not a triv-
ial task, and there are different approaches existing even till 
today [5]. 
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 Older studies defined itch as a “sub-threshold pain”. In-
deed, it was thought that itch sensation is evoked by weak 
activation of the nociceptors and the resulted neural activity 
is transmitted and processed by the same pathways and 
higher centers, which, in case of a more intense activation, 
are responsible for the processing of pain sensation [6]. 
Theories arguing for this hypothesis are summarized as the 
intensity theory of itch; based on this theory, itch and pain 
sensations are differentiated only by the intensity of the 
given stimulus activating the same branch of sensory system; 
i.e. pruriceptive system = nociceptive system [2, 4]. 

 This concept was strongly challenged by a multitude of 
neurobiological findings which collectively support the exis-
tence of an autonomous pruriceptive system organized (more 
or less) independently from the pain sensation. Indeed, a 
growing number of evidence supports the presence of itch-
specific sensory fibers which are different from the pain 
sensing ones [7, 8]. Furthermore, it is well known that pain 
inhibits itch [3, 5, 8-11]; actually, the itch-induced scratching 
response itself is a motor activity to induce pain and hence to 
alleviate itch. The logical consequence of these data and 
other observations together led to establish the so called 
specificity theory which proposes the existence of specialized 
receptor structures, neural pathways as well as higher centers 
processing exclusively itch, but not pain. Although recent 
data (see below) strongly support the specificity theory, it is 
also clear that the pain and itch sensing systems are inti-
mately related to each other [3, 10, 11]. Below, we introduce 
several overlaps of the pruriceptive and nociceptive systems, 
especially regarding receptors and mediators shared by the 
two systems. Based on these data, the selectivity (rather than 
the specificity) theory gives a better explanation about their 
relationship. The selectivity theory states that a subpopula-
tion of nociceptors is sensitive for pruritogenic stimuli; 
moreover, they have a specific central connection which 
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differs from other nociceptors. The selective activation of 
these pathways (i.e. by pruritogenic stimuli) results in itch 
sensation whereas painful stimuli, activating both the itch 
sensitive and insensitive nociceptors mask/inhibit the itch 
sensation and result in a (pure) pain sensation [12, 13]. 

2. ORGANIZATION OF THE PRURICEPTIVE SYS-
TEM 

2.1. Pruriceptive Sensory Fibers 

 A dense network of unmyelinated sensory C-afferent 
axons innervates the skin and hence ensures the appropriate 
detection of potentially harmful stimuli. Approximately 80% 
of these slow conducting fibers are mechano-sensitive 
polymodal nociceptors, responding to both chemical and 
thermal stimuli; the remaining ~ 20% are mechano-
insensitive ones activated by chemical signals [14, 15]. In 
the mechano-insensitive group, an “itch-sensitive” subset of 
neurons shows strong and sustained activation by histamine, 
the prototypical itch mediator (see below). These 
unmyelinated, histamine sensitive sensory neurons have 
large receptive fields and poor discrimination threshold for 
histamine induced itch. Furthermore, they are characterized 
by a particularly low conduction velocity and high 
transcutaneous electrical thresholds [7, 16-20]. These C-
fibers are also suggested to be involved in the generation of 
the axon reflex erythema [17]. 

 Importantly, the existence of other, histamine-insensitive 
(but most probably mechano- and heat-sensitive) 
pruriceptors was also proposed [8]. Intradermal insertion of 
spicules from the pods of the cowhage plant (Mucuna 
pruriens), in contrast to histamine, activated only mechano-
sensitive (but not mechano-insensitive) C-fibers indicating 
the existence of distinct, histamine-insensitive pruriceptive 
pathways [21]. In addition, Ikoma et al [22] demonstrated 
that low intensity and high frequency focal electrical 
stimulation was also able to evoke itch sensation, but without 
erythema. The lack of the axon reflex also indicates that itch 
sensation could be transmitted by a subset of sensory 
neurons clearly different from the above mentioned 
histamine sensitive ones. It was also shown that some of the 
mechano- and heat sensitive nociceptive C-fibers (but not the 
heat-insensitive ones) can be activated by histamine or other 
pruritogenic substances [23]. Furthermore, a recent study 
demonstrated that nociceptive, myelinated A-fibers may also 
contribute to the itch sensation evoked by cowhage [24]. 
This intriguing diversity of afferent pruriceptive fibers 
suggests that the various “submodalities” of itch experienced 
by humans could be due to the selective “encoding” from the 
very first level of the sensory system.  

2.2. Spinal Itch Processing 

 Certain studies also suggest that encoding of itch 
sensation is separated from the nociceptive system also at the 
spinal cord level. Indeed, in cats, histamine-responsive 
mechano-insensitive neurons were described in the dorsal 
horn (lamina I) of the spinal cord [25]. However, histamine-
responsive spinothalamic tract neurons were also identified 
among the mechano-, heat- and capsaicin-sensitive ones in 
primates [26]. It is therefore suggested that spinal projection 
neurons may receive innervation from both itch sensitive and 
nociceptive primary fibers [13] which supports the 

selectivity over the specificity hypothesis regarding the 
relation of itch and pain transmitting pathways. However, in 
spite of the overlap with the pain sensitive pathways, 
distinct, non-overlapping populations of spinothalamic tract 
neurons, transmitting histaminergic and non-histaminergic 
(cowhage evoked) itch sensations, were described [27]. 
Indeed, the two sensations can be selectively inhibited, even 
if they are transmitted by the same spinothalamic tract 
neurons; it was demonstrated that only the histamine (but not 
capsaicin) evoked activity of the same spinal projecting 
neurons can be inhibited by eliciting scratching within the 
respective cutaneous receptive field [28].  

 Of further importance, another subset of itch-specific 
spinal cord neurons was identified recently. In mice, ablation 
of gastrin-releasing peptide receptor (GRPR) expressing 
neurons in the lamina I of the spinal cord (without affecting 
pain sensation and motor activity) abolished the scratching 
response to all pruritogenic stimuli, including histamine-
sensitive and insensitive ones. It is important to note that the 
practical disappearance of the scratching behavior was 
related to the loss of the neurons and not to the loss of the 
receptors [29], although the mutation of the GRPR was also 
reported to slightly decrease the scratching. Consequently, 
GRPR agonists were able to induce itch [30]. A most recent 
study suggests that neuromedin B, a GRP and bombesin 
analogue peptide, is highly and selectively expressed on itch 
and pain sensitive neurons in dorsal root ganglia (DRG). 
Moreover, neuromedin B was suggested to play a role in 
neurotransmission between DRG sensory neurons and spinal 
cord interneurons whereas GRP is mostly expressed on 
spinal cord neurons [31]. These results indicate the urgent 
need to re-evaluate the concept about the role of GRP in itch 
transmission since it may also act at another level of itch 
processing pathway than earlier studies suggested. 

 Interestingly, in contrast to nociceptive second-order 
spinothalamic neurons, the itch-specific projection neurons 
do not exhibit spontaneous activity. It was proposed that the 
lack of spontaneous activity may be generated by an active 
(tonic) inhibition exerted by pain-processing neurons [9-13]. 
Recently, a subpopulation of inhibitory interneurons 
expressing the transcription factor Bhlhb5 during the 
development was identified as the mediator of the pain 
evoked itch inhibition [11]. Furthermore, descending 
adrenergic pathways were also suggested to control the 
inhibitory interneurons of the spinal cord [32, 33]. 

2.3. Higher Itch Centers 

 The itch-sensitive spinal neurons project from lamina I of 
the spinal cord to the ventrocaudal part of medial dorsal 
nucleus of the thalamus which has connections to the 
anterior cingulate and dorsal insular cortex [25, 34]. Beyond 
these regions, alterations in neuronal activities in several 
brain areas were reported in relation to itch processing above 
the thalamus; these include the primary and secondary 
somatosensory cortex, the premotor and supplementary 
motor cortex, the inferior parietal lobe, the cerebellum as 
well as certain temporal regions [34-40]. Although there are 
slight variations in the itch-related regions reported among 
studies, which could be due to different experimental designs 
[40], there is a consensus in the literature about the 
following: (i) the sensory-discriminative component of itch 
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is likely processed in the primary somatosensory cortex; (ii) 
the activities of the anterior cingulate and insular cortex may 
be related to the motivational and affective components; (iii) 
the motor component of the goal-directed scratching is 
attributed to the premotor and supplementary motor areas; 
(iv) these brain regions are also involved in the central pain 
processing; therefore, distinction of the two sensations is 
mainly based on the differential activation patterns of mostly 
identical centers [4, 10, 35-37, 41, 42]. 

 Most recent studies aimed to identify specific central 
nervous system activity patterns related to quantitative and 
qualitative characteristic of itch sensation. In a PET study, a 
positive correlation was found between the subjective 
intensity of histamine evoked itch sensation and the activity 
of the insula and the anterior cingulate cortex [43]. 
Moreover, Papoiu and colleagues [44] identified different 
cerebral activity patterns in itch evoked by histamine or 
cowhage. 

2.4. Types of Itch 

 Although different itch classifications have been pro-
moted, we (as well as others) suggest distinction between the 
below types of itch. These widely accepted categories exten-
sively reflect the above introduced hierarchical organization 
of the pruriceptive system; moreover, they are based on op-
erational, clinically relevant definitions [2, 4, 42, 45, 46]. 

 Pruriceptive itch: The most “trivial” category of itch 
which involves all peripherally induced pruritus arising 
from skin injuries (e.g. insect bite, botanical irritation) 
or diseases such as dry skin, atopic dermatitis (AD), 
psoriasis, infestations (e.g. scabies, pediculosis), 
urticaria. 

 Neurogenic itch: Centrally induced pruritus caused by 
systemic disorders such as chronic liver disease 
(cholestasis), chronic renal failure, and thyroid 
dysfunction which directly trigger higher levels of the 
pruriceptive system. In this case, the cause of itch is not 
a primary failure of the itch processing nervous system, 
although the pathological activation of the nervous 
system is a key element in the development of 
neurogenic itch. 

 Neuropathic itch: In this case, pruritus develops due to a 
primary neurological disorder of the central or 
peripheral nervous systems. For example, neuropathic 
itch can be induced by certain brain tumors, multiple 
sclerosis, peripheral neuropathy (e.g. postherpetic 
pruritus), nerve compression or irritation (e.g. notalgia 
paresthetica, brachoradial pruritus). 

 Psychogenic itch: Pruritus is related to psychological or 
psychiatric disorders such as parasitophobia, obsessive-
compulsive disorder or different psychoses leading to 
“neurotic or psychotic excoriations”.  

 With respect to the versatile role of TRP channels in 
different cellular sensory functions [47], below we focus on 
the first itch category (pruriceptive itch), i.e. the 
characteristics of pruritus originating from the skin as a 
result of a peripherally applied stimulus-induced sensation. 

2.5. Pruritogens 

 Pruriceptive itch is induced by various agents, collec-
tively referred to as pruritogens, stimulating the itch-
selective afferent fibers. These molecules are mostly released 
from various cell types of the skin which are in close prox-
imity to or even in direct physical contact with sensory nerve 
endings [48-51]. These mediators stimulate and/or sensitize 
the itch-selective sensory afferent fibers hence evoking ac-
tion potential firing. The release of these mediators can be 
provoked by external effects (e.g. insect bite), by various 
skin diseases or by pathological (e.g. inflammatory) condi-
tions. However, the cutaneous cell – sensory neuron connec-
tion is not a “one-way-street”: as neurons can be stimulated 
by various mediators liberated from the non-neural cells of 
dermis and epidermis, sensory neurons can also release cer-
tain neuropeptides which may act not only on other neurons 
but also on various non-neuronal cutaneous cell types [49]. 
Therefore, via these interactions, alterations in the general 
condition and homeostatic balance of the skin (e.g. barrier 
function, inflammatory responses) may significantly affect 
the release of pruritogens and hence may induce itch [8, 41, 
51-53]. Since TRP channels play pivotal roles in these 
epithelial-neuronal interactions (see below), first we shortly 
summarize the roles of the most important pruritogen media-
tors and their related cellular mechanisms involved in itch 
sensation. 

2.5.1. Histamine 

 Histamine is probably the most-known pruritogen [54, 
55]. It is mostly released from activated mast cells and 
basophil granulocytes, central players in local cutaneous 
inflammatory as well as systemic allergic responses [56, 57]. 
Although histamine was shown to directly activate sensory 
neurons and evoke itch both in humans and rodents, its 
exclusive etiological role in pruritic skin diseases is quite 
rarely documented. Histamine is the key pruritogen in 
various forms of urticarial diseases in which antihistamines 
are mostly effective [58, 59]. However, several other skin 
diseases (e.g. AD) with chronic pruritus are very often 
resistant to antihistamine therapies [54, 55, 60]. In a mouse 
dry skin model, histamine (in contrast of other itch 
inductors) did not stimulate scratching behavior [61], further 
supporting the hypothesis that histamine is not a central 
mediator of chronic pruritus. 

 So far, four histamine receptor subtypes (H1-H4) are 
identified; all of them are G–protein coupled receptors [54]. 
Among them, H1 and H4 are widely accepted as receptors 
responsible for itch sensation; however, quite interestingly, 
an H3 receptor inverse agonist was also shown to induce 
scratching behavior in mice [54, 62, 63]. 

2.5.2. Proteases and their Receptors 

 Serine proteases (trypsin, chymotrypsin, chymase) are 
capable of activating metabotropic, G-protein coupled prote-
inase-activated receptors (PARs) [64, 65]. Among them, 
PAR2, expressed by sensory neurons, is considered as a key 
molecule in itch sensation [66-68]. In experimental models, 
by using cowhage spicules (which contain the protease mu-
cunain) to activate PAR2, a histamine-independent parallel 
itch pathway was identified and found to significantly 
contribute to chronic itch sensation [10, 27, 44, 69, 70]. In-
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terestingly, the activation of PAR2 by kallikrein (a tryptic 
enzyme) related proteases was also shown in epidermal 
keratinocytes [71] which further argue for the impact of the 
pathway in pruriceptive itch. 

 Of great clinical importance, in AD patients the dysregu-
lation of PAR2 and the activating proteases were observed 
both in sensory fibers and in epidermal keratinocytes [72]. In 
addition, kallikrein activity was also increased in pruritic 
papular eruptions [73]. Furthermore, mutations in the serine 
protease inhibitor Kazal-type 5 in Netherton syndrome lead 
to increased PAR2 stimulation due to epidermal protease 
hyperactivity; this alteration may have a causative role in the 
development of the AD-like symptoms in this disease [74]. 

2.5.3. Role of Neuropeptides and Neurotrophins 

 Various neuropeptides, which are locally released from 
afferent nerve endings of activated sensory neurons, via the 
aforementioned intercellular communication circuits, can 
evoke the release of pruritogenes from non-neuronal cell 
types of the skin. For example, substance P (SP) is not only a 
well-known mediator of pain but it is also able to induce the 
degranulation of mast cells and hence the release of hista-
mine [75-78]. Beyond histamine, mast cells may also release 
several other (mostly inflammatory) mediators which proc-
ess can be also triggered by SP or vasointestinal polypeptide 
[78]. These mast cell-derived mediators may, in turn, further 
activate sensory neurons resulting in further SP liberation 
[41, 49, 51-53]. Participating in this “positive feedback,” SP 
can be considered as an important etiological factor of itch in 
several diseases. Indeed, in AD patients, significantly ele-
vated plasma SP levels were reported [79]. Likewise, in-
creased density of SP+ nerve fibers was found in prurigo 
nodularis lesions and chronic pruritus-affected skin regions 
compared to non-affected skin areas of the same patients [80, 
81]. Furthermore, in cholestasis associated with itch, in-
creased plasma SP concentrations were found when com-
pared to cholestasis without itch or to healthy controls [82]. 

 The pruriceptive role of another neuropeptide, calcitonin 
gene related peptide (CGRP) is less documented and rather 
controversial. CGRP was reported to prolong the latency of 
SP induced itch [83]. Interestingly, lower CGRP plasma lev-
els were found in AD patients during the exacerbation pe-
riod, although significantly higher values were measured in 
patients with severe pruritus than in patients with mild pruri-
tus [79]. In other studies, increased levels of CGRP were 
found in several patients with AD and with other pruritic 
dermatoses (e.g. nummular eczema, prurigo nodularis) [84, 
85]. In anesthetized mice, the scratching itself increased the 
outgrowth of CGRP+ nerve fibers [86]. Based on these re-
sults, it is tempting to hypothesize that in some pruritic dis-
orders the decreased CGRP level might be a primary itch-
inducing factor whereas the elevation of CGRP might be 
only a delayed consequence of scratching. 

 Beyond sensory neuron-derived neuropeptides, neurotro-
phins (such as nerve growth factor [NGF], neurotrophin-3 
and -4, and glial cell-line-derived neurotrophic factor 
[GDNF]), well-known regulators of cutaneous nerve devel-
opment and regeneration [87], may also play an etiological 
role in the development of itch sensation and pruritic dis-
eases. Several cell-types of the skin (e.g. keratinocytes, mast 
cells, and fibroblasts) produce and release neurothrophins 

[88]. Neurotrophins significantly influence itch sensation in 
various pathophysiological conditions via modulating inner-
vation density of the skin as well as expressions and/or sensi-
tivity of receptors expressed by sensory neurons. For exam-
ple, in inflammation and injuries of the skin, expression of 
NGF is highly increased which initiates acute sensitization 
and sprouting (leading to chronic sensitization) of C-type 
afferent fibers via activating specific TrkA receptors [87, 89-
91]. Increased expression and plasma level of NGF were also 
reported in pruritic skin diseases such as in AD [92], prurigo 
nodularis [93] and psoriasis vulgaris [94]. Likewise, increa-
sed expressions of neurotrophin-4 were found in lesional 
skin of AD patients [95]. Of further importance, NGF levels 
were well-correlated with symptom severity in AD and de-
creased by effective therapies [96], further supporting the 
etiological role of this neurotrophin. In good accord with 
these findings, atopic human keratinocytes, co-cultured with 
porcine sensory neurons, were shown to induce an increased 
neurite outgrowth which effect was mediated by NGF and 
GDNF [97]. It was also shown that NGF not only stimulates 
the sprouting of itch sensitive C-fibers but also upregulates 
the expression of certain neuropeptides (SP, CGRP) [97-100] 
and receptors (e.g. TRPV1, see below) [101-103] involved in 
itch. Finally, it should be noted that neurotrophins may exert 
their pruritogenic effect also via activating non-neuronal cell 
types of the skin. Indeed, NGF and neurotrophin-3 were re-
ported to induce degranulation and histamine release of mast 
cells [104-107]. 

2.5.4. Inflammatory Mediators as Peripheral Itch  

Sensitizers 

 Nociceptive sensory neurons can be sensitized by a mul-
titude of inflammatory mediators produced in acute or 
chronic inflammation of the skin; the sensitization is referred 
to as inflammatory hyperalgesia [108]. The plethora of me-
diators are released from various cell types of the skin such 
as mast cells (histamine, tryptase, serotonin, tumor necrosis 
factor-  (TNF- ), leukotriens, prostaglandins, etc.), kerati-
nocytes (prostaglandins, interleukins, neurotrophins, etc.), 
sebocytes (prostaglandins, leukotriens, interleukines, etc.), 
endothelial cells (kinins, endothelins, etc.) or immune cells 
(interleukins, chemokines, etc.). Importantly, the majority of 
these mediators possess marked pruritogenic potentials [5, 8, 
41, 46, 109-111]. 

 Prostaglandins PGE1 and E2 were shown to initiate or 
potentiate itch responses, which effect (at least in some 
cases) may be independent of histamine liberation from mast 
cells [112-115]. In addition, intradermal injection of other 
eicosanoids, such as leukotriene B4 (LTB4) or a non-
hydrolysable thromboxan A2 analog evoked itch-associated 
responses in mice [116, 117]. Furthermore, PAR2 activation 
on keratinocytes resulted in LTB4 (and PGE2) release in 
vitro and evoked scratching behavior in vivo which effects 
were reduced by 5-lipoxygenase inhibition arguing for that 
LTB4 may mediate the effect of PAR2 activation [118]. In-
terestingly, LTB4 is also suggested to play a role in mediat-
ing SP-evoked itch [119].  

 On the other hand, PGD2 exerts an anti-pruritic effect 
[120, 121] and was shown to be able to suppress IgE induced 
histamine release from the RBL-2H3 mast cell line [122]. 
Further supporting its anti-pruritic actions, both pharmacol-
ogical inhibition and in vivo silencing of cyclooxygenase 
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COX1 resulted in (among else) decreased PGD2 levels and 
enhanced the scratching behavior in NC/Nga mice, a murine 
model of AD [123, 124]. 

 The vasodilative, pro-inflammatory, and pain-inducing 
mediator, bradykinin also induces itch [20, 125, 126]. Its 
mechanism of action involves increased histamine release 
from mast cells [127], augmentation of histamine evoked 
responses [128, 129] as well as sensitization of sensory af-
ferent fibers and their receptors (e.g. TRPV1) [128]. 
Bradykinin applied to the skin elevates the release of neu-
ropeptides and prostaglandins [130] and was also reported to 
evoke itch on lesional atopic skin via a histamine independ-
ent manner [131]. Of further importance, both B1 and B2 
bradykinin receptors were shown to mediate protease and 
PAR2 activation-evoked scratching in mice [132, 133] and 
bradykinin was found to evoke scratching responses in com-
plete Freund's adjuvant-inflamed skin [134]. 

 Immune-competent cells of the skin can produce several 
cytokines and interleukins (ILs) which also contribute to the 
pathogenesis of pruritus and pruritic disorders. For example, 
IL-2 was found to induce itch [135, 136] and to activate a 
histamine and bradykinin sensitive subpopulation of sensory 
C-fibers [137, 138]. Interestingly, bradykinin potentiated the 
chemo-responsiveness of polymodal nociceptors to IL-2 
[139] resulting in a bi-directional augmentation. Clinical 
relevance of IL-2 in pruritic disorders was also implicated 
since elevated IL-2 serum levels were reported in hemodia-
lyzed patients with uremic pruritus compared to non-pruritic 
subjects [140]. Moreover, cutaneous overexpression of IL-4 
in mice resulted in an AD-like pruritic inflammatory skin 
disease [141] and increased IL-6 like immunreactivity was 
reported in cutaneous nerve fibers of prurigo nodularis pa-
tients [142]. 

 Recently, IL-13 and IL-31 were closely linked to AD. 
Skin specific overexpression of IL-13 resulted in a chronic 
inflammatory phenotype associated with pruritus, infiltration 
of various immune cells, and up-regulation of chemokine 
and cytokine genes [143]. As in the case of IL-13, transgenic 
overexpression of IL-31 also induced severe pruritus and 
dermatitis in mice [144]. Further supporting its role, in-
creased expression of IL-31 was found both in an atopic 
mouse model [145] and in AD patients [146, 147] in good 
correlation with the scratching behavior in mice [148] and 
the symptom severity in humans [149, 150]. The exact pruri-
togenic mechanism of action of IL-31 is still unclear al-
though IL-31 receptors were detected on a fraction of small 
diameter sensory neurons [151] as well as on normal human 
epidermal keratinocytes (NHEKs) [152]. On NHEKs, stimu-
lation of toll-like receptor TLR-2 resulted in the elevation of 
IL-31 receptor expression levels, followed by an enhanced 
secretion of the pro-inflammatory chemokine ligand CCL2 
(also known as monocyte chemotactic protein-1). Intrigu-
ingly, this action is missing from epidermal keratinocytes of 
AD patients where TLR-2 expression is impaired [152]. Fi-
nally, it should be mentioned that in pruritic myeloprolifera-
tive disorders, mast cells release higher amount of IL-31 and 
other pruritogenic mediators [153]. 

3. ROLES OF TRP CHANNELS IN PRURITUS 

 As shown above, pruritus is a complex sensory modality 
processed by mostly selective neural pathways and influ-

enced by a plethora of mediators released from both sensory 
neurons and cutaneous non-neuronal cell types. So, the key 
question is: why do we think that the transient receptor po-
tential TRP channels are of great interest in further under-
standing the (patho)physiological mechanisms underlying 
pruriceptive itch?  

Here are a few “convincing” examples: 

 TRP channels function as broadly expressed polymodal 
“cellular sensors” sensitive for alterations and agents of 
the physico-chemical environment (e.g. temperature, 
pH, osmolarity, ionic concentrations, endogenous 
mediators, external chemical irritants, etc.) [47, 154]. 
Therefore, they are “prone” to be sensitive for 
pruritogenic effects, substances and mediators as well. 

 TRP channels not only act as “sensors” but also as key 
“effectors” of various (patho)physiological processes 
(e.g. cellular homeostasis of different ions, secretory 
mechanisms, sensory functions of the nervous system, 
inflammation, etc.) [155-160]. In addition, they exert 
fundamental influence on cell-fate as they regulate 
differentiation and proliferation of different cell types 
[161-163]. Hence, it is conceivable that they also 
influence a multitude of processes involved in pruritus. 

Due to their expression patterns, they are especially 
promising candidates to “molecularly control” the itch-
coupled cellular mechanisms. Indeed, TRP channels are 
widely expressed on both sensory neurons and on several 
cutaneous non-neuronal cell types. Therefore, they hold 
perfect “molecular positions” in the pruritogenic crosstalk of 
cutaneous cells and sensory neurons [8, 41]. 

 Some members of the TRP channel family were reported 
to play crucial roles in pain sensation [164, 165] which, 
as was shown above, is closely related to the 
overlapping itch sensation [4, 5, 8, 41].  

3.1. The Family of TRP Ion Channels 

 The Drosophila TRP channel [166, 167] has become the 
founding member of the TRP ion channel superfamily which 
recently counts 28 mammalian members divided into 6 sub-
families based on structural homology. These are the canoni-
cal (or classical, TRPC), the vanilloid (TRPV), the melas-
tatin (TRPM), the mucolipin (TRPML), the polycystin 
(TRPP) and the ankyrin (TRPA) subfamilies. The TRP pro-
teins are non-specific cationic channels (mostly permeable 
for Ca2+ ions) containing 6 trans-membrane domains [154, 
168-170]. Besides functioning as sensors of external stimuli 
in physiological circumstances, they are also involved in the 
development of several pathological conditions and diseases 
[158, 171, 172]. 

 With respect to pruritus, certain thermosensitive TRPs 
(especially TRPV1, TRPV3, and TRPA1) have the greatest 
significance. However, some other member of TRP family 
may also contribute to development of itch and related dis-
eases [4]. 

3.2. TRPV1 

3.2.1. Activation and Sensitization of TRPV1 

 The most extensively studied TRPV1 is the firstly de-
scribed member of the TRPV subfamily. It was identified in 
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rat DRGs as the receptor for capsaicin, the pungent ingredi-
ent of red hot chili peppers (Capsaicum sp.) [173, 174]. The 
receptor itself is a highly Ca2+ permeable non-specific cation 
channel, which, like TRP channels in general, is formed in a 
tetrameric structure [173-175]. Not only capsaicin and other 
capsaicinoids, but a plethora of other botanical substances 
can activate TRPV1. The list of these herbal compounds is 
quite long and (among others) involves piperine, eugenol, 
zingerone, ginger-derived substances and, maybe most im-
portantly, resiniferatoxin (RTX), an ultrapotent capsaicin 
analog isolated from Euphorbia resinifera [176-178]. 

 Although these compounds serve as excellent experimen-
tal tools to study TRPV1 properties and, at the same time, 
are potential candidates for therapeutic applications, at least 
from physiological point-of-view the multitude of the below 
endogenous TRPV1 activating agents and mechanisms are 
possibly of greater importance. These involve heat ( 43°C), 
acidosis (pH<5.9) [173] and mostly arachidonic acid derived 
lipid mediators such as the endocannabinoid anandamide 
[179, 180], the “endovanilloid” N-arachidonoyl-dopamine 
[181],  and lypoxigenase products [182, 183]. Besides direct 
activation mechanisms, several molecules are able to act on 
TRPV1 via first activating their specific receptors and then 
initiating downstream signaling pathways leading to the sen-
sitization of TRPV1. Indeed, bradykinin [183, 184], ATP 
[185], lipoxygenase products [182, 183], prostaglandins 
[186, 187], histamine [188], various neurotrophins (NGF, 
neurotrophin-3 and -4) [91, 102, 184], TNF-  [189, 190], 
pro-inflammatory chemokines [191], and PAR2 [192, 193] 
were all reported to sensitize TRPV1 via various signal 
transduction pathways. TRPV1 activity was shown to be 
modulated by the protein kinase C (PKC) [183, 194-196], 
phospholipase C (PLC), and phosphatidylinositol 4,5-
bisphosphate (PIP2) [184, 197-200] systems as well as by 
intracellular ATP [201]. The sensitization process eventually 
results in the shift of the activation temperature and voltage 
threshold towards more physiological ranges [195, 202-204]. 

3.2.2. Function of TRPV1 Expressed on Sensory Afferents 

 TRPV1, expressed by the polymodal C-type nociceptive 
sensory neurons, was shown to play a key role in peripheral 
pain sensation. Acute activation of TRPV1 first excites the 
polymodal nociceptive neurons by initiating depolarization 
and concomitant action potential firing resulting in the in-
duction of pain [174, 205]. Via sensitization by the above 
endogenous mechanisms, TRPV1 can integrate the effect of 
various noxious, inflammation-related stimuli resulting in 
the activation of TRPV1 even at physiological temperature 
leading to thermal hyperalgesia [205, 206] which phenome-
non was not found in TRPV1 KO mice [205, 207, 208]. In 
addition to the “classical” nociceptive afferent functions, 
these neurons may also release their neuropeptide content 
upon TRPV1 activation (efferent functions of the sensory 
afferents). The neuropeptides (e.g. SP and/or CGRP), by 
acting on the neighboring cell populations in the skin, may 
then initiate the onset of neurogenic inflammation [53, 64, 
209]. Importantly, prolonged stimulation of TRPV1 may 
induce desensitization and emptying of the neuropeptide 
stores resulting in the suspension of the interplay between 
sensory neurons and cutaneous non-neuronal cells and hence 
inhibit the further exacerbation of the inflammatory proc-
esses [155, 205]. 

3.2.3. Contribution of Neural TRPV1 to Itch Sensation 

Induced by Various Pruritogens 

 Increasing amount of evidence strongly argue that the 
activation of TRPV1 can evoke not only pain but also itch. 
Indeed, as detailed above, most of the endogenous agents 
and mechanisms that activate and/or sensitize TRPV1 are 
also considered as potent pruritogens. Moreover, it is appar-
ent that the quality of the evoked itch sensation depends on 
the presence of these pro-inflammatory mediators and neu-
ropeptides. For example, during seasonal allergen exposure 
in allergic rhinitis, nasal application of TRPV1-activators 
induce itch [210]. In addition, intrathecal application of RTX 
also evoked scratching responses in animal experiments, 
which effect was potentiated in the presence of SP [211]. 
Interestingly, intradermally injected capsaicin evoked itch 
responses (scratching) if skin inflammation was previously 
induced by complete Freund's adjuvant; however, in control 
animals, capsaicin induced only pain responses (licking) 
[212]. 

 These results also indicate that the neuronal expression of 
the TRPV1 is not restricted to the nociceptive system; in-
stead, it is also expressed (and hence plays a functional role) 
in the pruriceptive system. The prototypic TRPV1-selective 
activator capsaicin reportedly activates both histamine-
reactive and non-reactive mechano-insensitive C-fibers as 
well as mechano-sensitive ones [20]. With respect to the 
mechanisms how TRPV1 can contribute to itch sensation, it 
is noteworthy that histamine was found to be able to activate 
TRPV1 via the phospholipase A2 (PLA2) – lipoxygenase 
pathway. Moreover, histamine-evoked itch is reduced in 
TRPV1 KO mice as well as by inhibiting H1 histamine re-
ceptor, PLA2, lipoxygenase or TRPV1 [188, 213]. The 
pharmacological blockade or genetic deletion of TRPV1 also 
inhibited trypsin-evoked itch in mice [133], which implicates 
the role of TRPV1 in PAR2-coupled pruriceptive signaling. 
Furthermore, Imamachi et al [214] found that TRPV1 is re-
quired for the transmission of histamine induced scratching 
behavior, but not for serotonin or endothelin-1 (ET-1) in-
duced itch. Interestingly, however, ablation of the TRPV1+ 
sensory neurons led to deficit in behavioral responses to all 
above itch inductors suggesting that although TRPV1 is ap-
parently not involved in mediating the actions of all prurito-
gens, the functional existence of TRPV1-expressing affer-
ents is a pre-requisite for their actions. 

 Recently, a membrane associated phosphoinositide-
binding protein, Pirt was identified as an important positive 
regulator of TRPV1 [215]. Pirt KO mice showed not only 
impaired responsiveness to noxious heat and capsaicin [215] 
but also decreased scratching responses to both histaminer-
gic and non-histaminergic itch evoked by chloroquine, al-
pha-methyl-serotonin, ET-1 or PAR2 activation [216]. Al-
though the authors concluded that the itch mediating effect 
of Pirt may be partly independent of TRPV1, it did not affect 
formalin induced TRPA1 activation and the concomitant 
scratching response [216]. 

 Recently, TLRs were also identified as new players in 
itch sensation [217]. TLR7 was co-localized with TRPV1 on 
sensory neurons of the mouse and mediated the imiquimod 
(TLR7 agonist) evoked scratch responses. In TLR7 KO 
mice, the non-histaminergic itch response (evoked by sero-
tonin, ET-1, PAR2 activation or chloroquine) was impaired. 
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The ablation of TRPV1+ neurons by RTX pretreatment ter-
minated the imiquimod response but the deletion of TRPV1 
channel had no effect, again arguing for the crucial role of 
TRPV1+ sensory afferents, but not the TRPV1 channel it-
self, in mediating TLR7-induced itch [218]. Controversially, 
another study [219] concluded that the pruritic effect of 
imiquimod was not related to TLR7; yet, the authors also 
confirmed the role of TRPV1 expressing neurons in the 
process. In animal experiments using respective KO mice, 
TLR3 (expressed in the subset of sensory neurons positive 
for TRPV1 and GRP) was also reported to mediate both his-
tamine dependent and independent itch. Importantly, genetic 
deletion of TLR3 attenuated itch responses and central sensi-
tization-driven pain but it did not affect acute pain sensation. 
In these animals, the responsiveness of DRG neuronal cell 
bodies was normal both for algogenic and pruritogenic 
agents; in contrast, the excitatory synaptic transmission in 
the spinal cord was impaired [220]. 

 Recent data also suggested that the contribution of 
TRPV1 both to itch and pain sensation may be related to 
distinct populations of sensory neurons. The conditioned 
genetic deletion from DRG neurons of vesicular glutamate 
transporter type 2 (VGLUT2) (leading to a marked removal 
of glutamatergic transmission) resulted in a dramatic in-
crease in itch-related behavior and, at the same time, a sig-
nificant deficiency in thermal pain sensation. The deletion of 
the VGLUT2 affected the majority of TRPV1 expressing 
neurons which effect was thought to be responsible for the 
pain transmission. However, another, partly overlapping 
subpopulation of TRPV1+ neurons, also expressing GRP, is 
suggested to be responsible for itch sensation. It is proposed 
that due to impairment of the nociceptive system by 
VGLUT2 deletion, the itch inhibitory effect of the pain proc-
essing pathway was also ablated and this, in turn, resulted in 
a dramatic increase in spontaneous as well as histamine-
dependent and independent scratching behavior. Further-
more, in animals with VGLUT2 deleted from nociceptors, 
capsaicin evoked mostly itch but it caused clearly pain in 
their littermate controls [221, 222]. 

 These data clearly argue for the existence of functionally 
different populations of TRPV1 expressing sensory neurons 
in pain and itch transmission and introduce VGLUT2 as a 
functionally important marker of the processes. Evidently, 
further investigations are needed to clarify the molecular 
characteristic of the itch processing neurons and to explore 
the exact contribution of other neurotransmitters (e.g. GRP) 
to the diversity of itch evoking effects and related pathways. 

3.2.4. The Role of TRPV1 Expressed By Non-neuronal 

Cells 

 Numerous reports indicate that TRPV1 is widely ex-
pressed, beyond sensory afferents, on several non-neuronal 
cell-types of the skin, including epidermal and hair follicle 
keratinocytes, mast cells, dendritic (Langerhans) cells, sebo-
cytes and endothelial cells [223-236]. Activation of non-
neuronal TRPV1 channels significantly influences key func-
tions of these cutaneous cells which may lead to the devel-
opment of pruritus and pruritic disorders. Indeed, TRPV1 
activity influences the local immunological processes in the 
skin. The activation of TRPV1 was reported to induce the 
expression of COX-2 and the release of PGE2 and IL-8 from 
cultured epidermal keratinocytes [236] as well as it stimu-

lated IL-4 release from mast cells [231]. Likewise, TRPV1 
influenced (i) synthesis of numerous pro-inflammatory me-
diators produced by human hair follicles [223]; (ii) cytokine 
and lipid production of human sebaceous gland-derived se-
bocytes [227]; and (iii) maturation of dendritic cells [225, 
234]. Furthermore, TRPV1 was found to decrease prolifera-
tion, increase apoptosis [226], and induce matrix metallopro-
teinase production [237-239] of epidermal keratinocytes; 
these effects may all contribute to skin aging and altered 
barrier functions and hence to the development of related 
pruritus [237, 240]. In good agreement with these data, acti-
vation of TRPV1 delayed the barrier recovery after mechani-
cal injury (tape stripping) which effect was blocked by cap-
sazepine, a TRPV1 antagonist [241]. Likewise, the novel 
TRPV1 antagonist PAC-14028 also accelerated barrier re-
covery and alleviated the AD like symptoms in a hairless 
mouse model [242]. In addition, increased expression of 
TRPV1 was reported on epidermal keratinocytes of prurigo 
nodularis patients which further support the role of non-
neuronal TRPV1 in pruritic diseases [235]. 

3.2.5. Potential Itch Therapies Targeting TRPV1 

 As was presented above, TRPV1 has a central role in the 
development of pruriceptive itch on both sensory neurons 
and non-neuronal cutaneous structures; therefore, targeting 
the TRPV1 to alleviate its activity seems to be a promising 
therapeutic strategy to treat itch. Interestingly, the most well-
known compound to decrease the TRPV1 activity is its ago-
nist capsaicin itself [155, 174, 205, 243]. As we have pre-
sented above, prolonged application of capsaicin (and other 
exogenous vanilloid substances) results in depletion of neu-
ropeptides in the C-type neurons causing desensitization of 
TRPV1-coupled responses which can lead to disruption of 
the pruritogenic crosstalk of sensory neurons and other skin 
cells [2, 5, 8, 41, 45, 46, 244]. Although very few studies, 
investigating the therapeutic effect of topical capsaicin, ful-
fill the criteria of a well-designed, correctly controlled hu-
man clinical trial [245], numerous publications report on the 
beneficial effects of its topical application in different pru-
ritic syndroms such as notalgia paresthetica, psoriasis, pru-
rigo nodularis, aquagenic pruritus, uremic pruritus, cholesta-
sis, pruritus ani or allergic rhinitis [244, 246-255]. Likewise, 
the anti-pruritic effect of capsaicin was also reported in ani-
mal experiments [256, 257].  

 The major problem of topical capsaicin application is the 
undesired algogenic side effect; namely, via activating 
TRPV1 on nociceptors, it evokes an acute burning pain sen-
sation which greatly reduces patient compliance [258]. 
Therefore, the use of such agonists which cause only minor 
excitation but hold strong desensitization power is highly 
desirable [4]. RTX is one of the most promising candidates 
as it has a threefold higher potency to induce desensitization 
than activation of the channel [174]. Another novel strategy 
could be the activity dependent targeting of TRPV1; this 
may be reached by using pore permeable capsaicin analogs 
(e.g. permanently charged capsaicinoids) which target and 
desensitize only (hyper)active channels [259, 260]. 

 Another straightforward approach to decrease TRPV1 
activity is the application of TRPV1 antagonists. As men-
tioned before, pilot studies using topical capsazepine or the 
novel antagonist PAC-14028 reported beneficial effects to 
alleviate itch in different AD models [241, 242, 261, 262]. 
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 Intriguingly, TRPV1 can be involved in mediating the 
effects of therapeutic tools designed to target other mole-
cules. Tacrolimus, a potent calcineurin (protein phosphatase 
2B) inhibitor is a widely used drug in the treatment of AD. 
Although further studies are needed to clarify its exact 
mechanism of anti-pruritic action, it was revealed that tac-
rolimus can influence the phosphorylation state of TRPV1 
and hence inhibit (pruritogenic) Ca2+ currents in porcine 
DRG neurons [263] 

3.3. Role of Other Thermosensitive TRP Channels in 
Pruritus 

3.3.1. TRPV2 

 TRPV2 was originally described on a subset of medium- 
to large-diameter sensory neurons as a detector of noxious 
hot temperature (> 52 °C) ranges [264]. Yet, later on, it was 
also identified on C-type sensory fibers of human skin [265] 
and co-localization with its closest relative, TRPV1, was also 
reported [266]. In addition, TRPV2 was found not only on 
sensory nerve fibers but also on human epidermal keratino-
cytes and on human mast cell line HMC1 [267, 268].  

 Although this expression pattern can “nominate” TRPV2 
as an important player in the development of itch, role of the 
TRPV2 channel even in the noxious temperature sensation is 
controversial. Indeed, TRPV2 KO mice display normal 
thermal and mechanical nociception [269]. Moreover, al-
though the rodent channel was activated by high tempera-
ture, the human TRPV2 seems to be insensitive for noxious 
heat [270]. However, the non-psychotropic phytocannabi-
noid cannabidiol was shown to activate TRPV2 expressed on 
sensory DRG neurons and resulted in a release of CGRP 
[271] which may influence pain and/or itch sensation. Fur-
thermore, activation of TRPV2 by various physical stimuli 
caused the degranulation of human mast cell line HMC1 as 
well as induced a transmembrane current and increased the 
intracellular Ca2+ concentrations. Importantly, all of the 
above effects were inhibited by SKF96365, a blocker of 
TRPV2 [268]. It was also suggested that the (potentially pru-
ritogenic) PKA dependent phosphorylation can modulate the 
activity of TRPV2 expressed on mast cells [272]. By activat-
ing mast cells, TRPV2 may therefore contribute to the de-
velopment of pruritus. 

3.3.2. TRPV3 and TRPV4 

 Due to their similar temperature sensitivities and expres-
sion patterns, which are associated with partly overlapping 
physiological functions, it is reasonable to discuss the role of 
TRPV3 and TRPV4 together. TRPV3 is most abundantly 
expressed on epidermal keratinocytes; yet, it was also de-
scribed on sensory neurons in co-expression with TRPV1 
[273-276]. TRPV4 was originally described as an osmore-
ceptor expressed in various tissues including sensory neu-
rons [277-280] and keratinocytes [281].  

 Both TRPV3 and TRPV4 are activated by physiological, 
innocuous warm temperature ranges (>33°C for TRPV3 and 
ca. >30 °C for TRPV4) [273-276, 282-284] and their dele-
tion results in altered sensation of thermal stimuli [285-287] 
– although recent results suggest that their contribution to 
heat sensation is not essential in mice [288]. Of further im-
portance, the thermo-sensory functions of TRPV3 and 
TRPV4 are apparently linked to keratinocytes; namely, the 

moderate warm temperature elevation, that increases the 
activity of TRPV3 and/or TRPV4 expressed in keratinocytes, 
resulted in the release of ATP which, in turn, can transmit 
the thermal information toward sensory neurons [289-292]. 
It was also shown that TRPV3, overexpressed in epidermal 
keratinocytes, might modulate sensory modalities by regulat-
ing PGE2 secretion in the skin cells [293]. Finally, a recent 
study has introduced nitric oxide as a key keratinocyte-
derived mediator regulating thermosensory behavior (and 
other cutaneous functions) when released from epidermal 
keratinocytes upon stimulation of TRPV3 expressed by these 
cells [294]. 

 Beyond thermosensation, TRPV3 and TRPV4 are also 
potential key players in pruritus [4, 8, 41, 265, 295]. In an 
experimentally induced dry skin pruritus model, the applica-
tion of acetone-ether-water treatment resulted in less intense 
scratching behavior, associated with decreased sprouting of 
sensory fibers, in TRPV3 KO mice than in wild-type con-
trols [296]. In good accordance with the itch-inhibitory ef-
fect of the deletion of TRPV3, a gain-of-function 
(Gly573Ser) mutation of the trpv3 gene resulted in a sponta-
neously developing itchy dermatitis and a closely related 
hairless phenotype both on mice and rats [297, 298]. Kerati-
nocytes from these animals showed a highly augmented Ca2+ 
elevation in response to thermal stimulation and histological 
analysis of the skin revealed the inhibition of hair follicle 
growth [299]. In line with these findings, activation of 
TRPV3 was also found to be a negative regulator of the hu-
man hair cycle [300]. Transgenic mice overexpressing the 
above gene-of-function mutation in the epidermal keratino-
cytes also exhibited symptoms of severe itch, AD-like der-
matitis, and increased serum levels of IgE and various pro-
inflammatory cytokines. Similar to AD, hyperkeratosis, in-
creased infiltration of mast cells and CD4+ lymphocytes, 
increased tissue NGF levels and elevated NGF production 
for thermal stimuli, greater skin sensory fiber innervation 
densities as well as associated scratching behavior were ob-
served in these mice [301]. Of greatest importance, most 
recently, partly identical gain-of-function mutations of 
TRPV3 were identified in Olmsted syndrome, a rare con-
genital disorder characterized by palmoplantar and periorifi-
cial keratoderma, alopecia, and severe itching. Mutant 
TRPV3 channels overexpressed in HEK cells exhibited an 
increased inward current and apoptotic cell death which was 
also detected in keratinocytes of affected patients [302]. 
Olmsted syndrome therefore can be regarded as the first “cu-
taneous channelopathy” related to thermosensitive TRP 
channels. 

 TRPV3 and TRPV4 also play crucial roles in regulation 
of skin barrier functions, impairment of which may result in 
pruritus (e.g. in AD). In keratinocytes, TRPV3 forms a func-
tional complex with the receptor of epidermal growth factor 
(EGF) which is indispensable for the formation of the 
physiological skin barrier. Deletion of TRPV3 resulted in 
wavy hair phenotype and impaired epidermal barrier forma-
tion due to decreased transglutaminase activity, a key proc-
ess of keratinocyte differentiation [303]. Temperature ranges 
activating TRPV3 and TRPV4, similar to the effects of 
TRPV4 agonists (but, interestingly, not to those of TRPV3 
activators), accelerated barrier recovery after tape striping. In 
contrast, challenging with higher temperatures and (as men-
tioned above) application of the TRPV1 activator capsaicin 
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delayed barrier regeneration [241]. TRPV4 was also shown 
to play an important role in the formation of intercellular 
junction in keratinocytes, another component of the healthy 
barrier [304]. Namely, the channel was found to interact with 

-catenin and was localized in cell-cell junctions. In TRPV4 
KO mice, leaky cell-cell junctions and delayed actin rear-
rangement and stratification were observed which were asso-
ciated with reduced intracellular Ca2+ levels and suppressed 
Rho activation [305]. Furthermore, using human keratino-
cytes and skin cultures, it was demonstrated that the activa-
tion of TRPV4, either by agonists or by temperature, pro-
moted cell-cell junction formation and barrier recovery 
[306]. 

 Finally, it should also be mentioned that the mechanisms 
of action of certain pruritogens may also involve TRPV3 
and/or TRPV4. For example, PAR2 activation sensitizes 
TRPV4-coupled cellular responses in DRG neurons resulting 
in increased neuropeptide release and mechanical hyperalge-
sia [307]. Furthermore, on surgical samples from breast op-
erations, increased in situ expressions of TRPV3 and TRPV4 
were found in the basal layers of keratinocytes in the breast 
pain affected group. This expression pattern was associated 
with a higher NGF and TRPV1 expressions on sensory fibers 
[308] which correlation might also contribute not only pain 
but also to itch. Of further importance, mast cell functions 
also seem to be affected by TRPV3 and TRPV4. Namely, 
laser irradiation of mouse RBL-2H3 mast cells evoked intra-
cellular Ca2+ increase and histamine release via TRPV4 
[309]. TRPV4 (like TRPV2) was also expressed by HMC1 
human mast cells and the increase of temperature to 37-39 
°C, as well as the TRPV4 agonist 4 -phorbol 12,13-
didecanoate, induced a weakly outward rectifying current 
and increase of the intracellular Ca2+ concentration [310]. 

 Taken together, these intriguing findings collectively 
suggest that both TRPV3 and TRPV4 are promising, novel 
targets in the future management of pruritic dermatoses. 

3.3.3. TRPA1 

 TRPA1 was originally described as a noxious cold  
(<17 °C) activated channel expressed by sensory neurons 
[311, 312]. Besides cold, it is also activated by various, 
mostly pungent and/or irritant compounds such as botanical 
substances like mustard oil, delta-9-tetrahydrocannabinol, 
eugenol, gingerol, methyl salicylate, allyl isothiocyanate, 
cinnamaldehyde, formalin, and nicotine [313-316]. Like 
TRPV1, TRPA1 is also considered as a key player of trans-
duction of painful stimuli and a potential target of analgesic 
therapies [317-320]. 

 Recently, the intriguing role of TRPA1 was reported in 
histamine independent itch. Chloroquine, an anti-malaria 
drug, was shown to activate mouse and rat MrgprA3 and 
human MrgprX1, members of Mrgpr family (Mas-related G 
protein-coupled receptors, exclusively expressed in periph-
eral sensory neurons) and, by this, evoked itch – a mecha-
nism which can be responsible for the undesired side effect 
of chloroqiune. In mouse, chloriquine responsive (MrgprA3 
expressing) sensory neurons also responded for capsaicin, 
histamine, and BAM 8-22, a specific agonist of the 
MrgprC11, suggesting the co-expression of the Mrgprs with 
TRPV1 and histamine receptors. Furthermore, these Mrgprs 
were also co-expressed with GRP, another neurotransmitter 

of the “itch pathway” (see above). Importantly, the deletion 
of the mrgpr gene cluster resulted in an impaired chloriquine 
response but it did not affect the histamine evoked scratching 
behavior indicating the role of Mrgprs in non-histaminergic 
itch [321]. 

 Apparently, TRPA1 plays a crucial role in the down-
stream signaling of both MrgprA3 and C11 [322, 323]. In-
deed, in TRPA1 KO mice, but not in TRPV1 KO and wild-
type animals, the activation of neither MrgprA3 (by chloro-
quine) nor MrgprC11 (by BAM 8-22) resulted in itch related 
scratching behavior. In addition, although both substances 
evoked an elevation of the intracellular Ca2+ concentration 
and firing of action potentials on a capsaicin and mustard oil 
sensitive subset of DRG neurons from wild-type animals, 
this effect was abolished in TRPA1 KO mice (but not in 
TRPV1 KO animals). Furthermore, in heterologous expres-
sion systems, activation of the Mrgprs was able to evoke 
Ca2+ responses only in those cells in which they were co-
expressed with TRPA1. Finally, pharmacological experi-
ments suggested that MrgprA3 was coupled to TRPA1 via 
the  subunit of G proteins whereas MrgprC11 most proba-
bly signals via a PLC dependent pathway [322]. 

 TRPA1 is also involved in other pruritogenic mecha-
nisms. Hydrogen peroxide induced itch was mediated by 
TRPA1 (as it was inhibited by the pharmacological blockade 
of TRPA1) but not by TRPV1, although the ablation of 
TRPV1+ neurons also abolished the itch response. The hy-
drogen peroxide induced itch was not influenced by hista-
mine receptor blockers, which, similar to the above findings, 
further argue for the role of a TRPA1+ subpopulation within 
the TRPV1+ sensory afferent in the mediation of histamine-
independent itch [324]. In addition, PAR2 activation was 
also reported to sensitize TRPA1 agonists-evoked currents in 
DRG neurons, likely via PLC mediated hydrolysis of PIP2 
[325]. Paclitaxel, a microtubule de-organizer used in cancer 
chemotherapies, was found to increase mast cell tryptase 
activity. In mice, this results in the onset of neuropathic pain 
(a known side effect of paclitaxel administration) via the 
activation of PAR2 and consequent sensitization of TRPA1, 
as well as TRPV1 and TRPV4 [326]. 

 In contrast with the above findings, it was also reported 
that the pharmacological inhibition of TRPA1 enhanced ET-
1 (but, notably, not histamine) induced itch responses [327] 
suggesting an inhibitory role of TRPA1 in (at least some 
forms of) histamine-independent itch. This controversy indi-
cates the urgent need for further studies to clarify the contri-
bution of TRPA1 to other forms of itch. 

 Recently, TRPA1 expression was also reported on 
keratinocytes and melanocytes in the human epidermis as 
well as on dermal fibroblast. The treatment of primary hu-
man epidermal keratinocytes with icilin (activator of both 
TRPA1 and TRPM8) caused marked alteration in the expres-
sions of several genes encoding (among else) adhesion and 
extracellular matrix components, heat shock proteins, and 
molecules regulating cell cycle, apoptosis, differentiation 
and proliferation. Furthermore, expressions of pro-
inflammatory cytokines IL-1  and IL1-  were also increased 
[328] (commented in [329]). 

 TRPA1, expressed on the mouse epidermal keratino-
cytes, was recently reported to contribute to skin permeabil-
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ity barrier recovery. Following the disruption of the epider-
mal barrier of hairless mice by tape striping, topical applica-
tion of allyl isothiocyanate or cinnemaldehyde accelerated 
the barrier recovery, which effect was prevented by pre-
treatment with the TRPA1 specific antagonist HC030031. 
Local cooling of the skin (10-15 °C for 1 min) evoked a 
similar effect, most probably via accelerated secretion of 
(barrier-forming) lamellar bodies at the interface of stratum 
granulosum and corneum; this action was also inhibited by 
the TRPA1 antagonist [330]. Although the above exciting 
data clearly suggest a possible role of TRPA1 in the control 
of various biological processes of skin keratinocytes, the 
exact role of the channel expressed by non-neuronal cells 
and its contribution to itch sensation needs to be clarified in 
forthcoming studies.  

3.3.4. TRPM8 

 TRPM8 is a cold sensitive (<25 °C) member of TRPM 
subfamily, expressed by a specific subset of sensory neurons 
which usually do not express TRPV1 or CGRP. The channel 
is considered as a major sensor of environmental cold stimuli 
and it is also sensitive for cooling agents such as menthol, 
eucalyptol or the synthetic icilin [331-334]. 

 Menthol has a long tradition in topical anti-itch therapy 
although its success is rather controversial [41]. Case studies 
reported successful treatment using menthol in various forms 
of pruritus [335, 336] although the results obtained in con-
trolled studies are not obvious. Moderate cooling of skin as 
well as topical application of menthol decreased the subjec-
tive intensity of histamine-induced itch [337]. However, an-
other study reported that menthol was ineffective to suppress 
histamine-induced itch and, moreover, increased the transe-
pithelial water loss, suggesting an irritant nature of the com-
pound [338]. Later, menthol was found to be effective in the 
treatment of mustard gas-induced pruritus in chemical war-
fare-injured veterans [339]. 

 According to the available data, it appears that the neu-
ronal TRPM8 do not contribute to the development and/or 
exacerbation of itch sensation, although it may exert an in-
hibitory role. TRPV1+/CGRP+ DRG neurons very limitedly 
expressed TRPM8 and did not respond to icilin, although ca. 
10-50% of them could be activated by capsaicin, mustard oil, 
menthol, acidic pH, ATP as well as by histamine and chlori-
quine [340]. Pruritogenic pro-inflammatory mediators such 
as e.g. bradykinin and PGE2, desensitized the cooling-
evoked (and most probably TRPM8 mediated) currents and 
shifted the activation threshold towards more negative mem-
brane potentials [341]. Most recently, it was also proven that 
this inhibitory effect of the pro-inflammatory mediators tar-
gets TRPM8 via a quite “unusual” signaling mechanism; i.e. 

 subunit of a G protein directly bound to TRPM8 [342]. 

 Our knowledge about the role of non-neuronal TRPM8 in 
itch is very limited and often controversial. The expression 
of TRPM8 was described on RBL-2H3 basophilic leukemia 
mast cell line and its activation, both by menthol and cold 
stimuli, evoked an elevation in the intracellular Ca2+ concen-
tration and induced the release of histamine. These effects 
were blocked by both pharmacological blockade and siRNA 
based silencing of TRPM8 [343]. In contrast, another study 
could not identify TRPM8 expression in human mast cells. 
Furthermore, the role of TRPM8 in mast cell degranulation 

was not identified either in human or in mouse mast cells 
[344]. Recently, the expression of TRPM8 (both at mRNA 
and protein levels) was suggested on epidermal keratinocytes 
isolated from hairless mice. In these animals, following the 
epidermal barrier disruption by tape stripping, topical appli-
cation of menthol or the TRPM8 agonist WS12 potentiated 
the barrier recovery, which effect was blocked by the general 
TRP antagonist ruthenium red as well as by the TRPM8 spe-
cific antagonist BTCT [345]. 

3.3.5. Targeting Termosensitive TRP Channels in Pruritus 
– Multiple Targets, Multiple Effects 

 The most obvious “protocols” which may target ther-
mosensitive TRP channels during itch therapies are applying 
various temperature ranges – in other words, warming and 
cooling the skin. It is traditionally known in dermatological 
practice that cooling alleviates whereas warming potentiates 
itch sensation [4]; however, the quite few studies investigat-
ing the effect of “thermal therapies” are not always consis-
tent with this mostly “anecdotal evidence”. Indeed, as we 
mentioned above, moderate cooling was found to increase 
histamine induced itch sensation [337]. However, in another 
study, noxious heat reduced histamine-induced skin blood 
flow and itch intensity whereas cooling suppressed only itch 
intensity (without affecting histamine induced blood flow); 
moderate warming did not exert any effect [346]. Although 
the exact mechanisms of these intriguing findings remain to 
be determined, one possibility could be the simultaneous 
activation of cold sensitive receptors and the desensitization 
of the heat responsive ones. Alternatively, interactions be-
tween the warm/heat and cold sensitive mechanisms are also 
possible. Indeed, warming was shown to inhibit mustard oil 
induced TRPA1 currents in both TRPA1 overexpressing 
HEK cells and sensory neurons, similar to as described in 
TRPM8 overexpressing HEK cells activated by menthol 
[347].  

 The application of different TRP channel targeting sub-
stances often results in rather controversial effects due to the 
general lack of highly selective TRP channel agonists and 
antagonists. Among the well-known botanical substances 
used to modulate TRP channels, capsaicin is possibly the 
only one which acts exclusively on one member of TRP fam-
ily [176, 348]. For example, carvacrol, thymol and eugenol 
were reported to activate TRPV3 [349] which might be re-
sponsible for the warm (and sometimes irritant) sensations, 
evoked by these substances, when applied on the skin sur-
face [4]. However, they are also able to activate other TRP 
channels such as TRPV1, TRPA1 and TRPM8 [176]. In ad-
dition, although the exact mechanism of action is not known, 
eugenol and capsaicin were shown to evoke IL-1  and PGE2 
release, respectively, from mouse keratinocytes [236, 350] 
which may contribute to their irritant actions by stimulating 
mast cell growth [351]. 

 Despite of the difficulties in understanding their actions, 
TRP targeting compounds are very promising agents of anti-
pruritic therapies. Indeed, modulating multiple TRP channel 
activities (e.g. activating TRPM8 and inhibiting TRPVs in 
parallel) might be especially effective. Camphor is one of 
these promiscuous substances with good anti-itch potential: 
it was described to activate TRPV3, to activate and then de-
sensitize TRPV1, and also to inhibit TRPA1 [4]. The often 
used menthol also possesses multiple mechanisms of action: 
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beyond its action on TRPM8, menthol was also described to 
inhibit TRPA1 [352] and to stimulate TRPV3 [176]. Interest-
ingly, a concentration dependent effect was also reported; i.e. 
menthol, at low doses, was shown to activate whilst, at high 
doses, block TRPA1 [353]. These variable effects may ex-
plain why, in some cases, menthol was found to be prurito-
genic although it is generally considered as an anti-pruritic 
agent. At last, another botanical substance, citral should be 
mentioned. On sensory neurons, it was found to activate 
multiple TRP channels (TRPV1 and TRPV3, TRPM8, and 
TRPA1); produced a long-lasting inhibition of TRPV1, 
TRPV2 and TRPV3, and TRPM8; and transiently blocked 
TRPV4 and TRPA1 [354]. This intriguing activation and 
desensitization profile makes citral a highly promising can-
didate of topical itch therapies. 

 Finally, it should also be noted that not only anti-pruritic 
but itch evoking pruritogenic compounds may also act (often 
simultaneously) on multiple TRP channels. For example, 
clotrimazole, an antifungal agent, often evokes burning or 
itching side effects [355, 356]. These features may be related 
to its differential actions on multiple TRP channels; namely, 
it activates TRPV1 and TRPA1 but inhibits TRPM8 in vitro 
[357]. 

3.4. Potential Roles of thermo-insensitive TRP Channels 
in Pruritus 

3.4.1. TRPCs and Keratinocyte Differentiation 

 Calcium signaling is a key element of keratinocyte dif-
ferentiation [358-361] and, as we suggested above, altered 
differentiation of epidermal keratinocytes may play a role in 
pruritic diseases such as e.g. AD and psoriasis [362]. TRPC 
channels are important regulators of intracellular calcium 
homeostasis in several cells types [47, 154, 363, 364]. Epi-
dermal or mucosal keratinocytes also express various TRPC 
channels (TRPC1, TRPC4, TRPC5, TRPC6, TRPC7), and 
their expression levels fluctuate in a differentiation-
dependent manner [365-367]. 

 TRPC1 was overexpressed in epidermis of patients with 
Darier's disease (DD) (or keratosis follicularis), a genetic 
disorder with loss-of-function mutations in the SERCA2b 
gene encoding the Ca2+-pump of the endoplasmic reticulum. 
This malformation causes a severe differentiation disorder of 
keratinocytes and is very often associated with intense pruri-
tus [368, 369]. TRPC1-mediated Ca2+ influx was signifi-
cantly higher in keratinocytes obtained from DD patients. 
Furthermore, DD keratinocytes show enhanced proliferation 
and apoptosis resistance, suggesting that TRPC1 is involved 
in the abnormal keratinization in DD epidermis. Importantly, 
experiments performed on SERCA2b KO mice as well as on 
human epidermal HaCaT keratinocytes, in which expression 
of SERCA2b was silenced by siRNA, concluded similar 
results [369]. Other studies also show that TRPC1/TRPC4 
channels were important for keratinocyte differentiation as 
siRNA based silencing of these channels prevented the in-
duction of Ca2+-induced differentiation. On cells derived 
from basal cell carcinoma, the lack of TRPC1/TRPC4 was 
coupled to impaired differentiation and enhanced prolifera-
tion [370]. Furthermore, the activation of TRPC6 expressed 
on both HaCaT and NHEKs induced differentiation and in-
hibited proliferation via increasing Ca2+ influx to the cyto-
plasm [371-373]. In addition, decreased expression of 

TRPC1/3/4/5/6/7 was found in keratinocytes from psoriasis 
patients, another pruritic dermatosis with a disturbed prolif-
eration-differentiation program of the cells. Since recent 
findings also raise the possible involvement of TRPC6 in 
AD [374], these data collectively argue for the role of certain 
TRPCs in itch development. 

3.4.2. Mg
2+

 Homeostasis in Itch – Possible Roles of 

TRPM6 and TRPM7 

 Recent data attract the attention to certain TRP channels 
involved in Mg2+ homeostasis. In rats, insufficient dietary 
magnesium intake leads to low serum Mg2+ concentration 
which results in the development of dermatitis and intense 
scratching [375]. Likewise, pruritus of uremic patients com-
pletely disappeared after normalizing the concentration of 
magnesium Mg2+ in the dialysate [376]. Interestingly, EGF, a 
central growth factor in epidermal differentiation, has a cru-
cial role in controlling the proper function of TRPM6 [377], 
besides that of TRPV3 (see above). Indeed, EGF stimulates 
Mg2+ reabsorption in the renal distal convoluted tubule. 
Moreover, impaired sorting of pro-EGF at the basolateral 
membrane of the tubular epithelial cells was shown to dis-
turb this mechanism and resulted in renal magnesium loss 
[378]. Supporting the link between EGF–TRPM6–Mg2+–
itch, several studies reported itch as a common side effect of 
cetuximab, a chemotherapeutic monoclonal antibody which 
inhibits the EGF-receptor [379-381].  

 A direct link between Mg2+ ions and itch could be the 
fact that Mg2+ ions very often inhibit TRP channels. Of great 
importance, Mg2+ was shown to constitutively inhibit 
TRPV3 expressed by epidermal keratinocytes; therefore, in 
overall body Mg2+ deficiency, TRPV3 channel activity could 
be augmented which may lead to the development of pruritic 
skin diseases [382]. 

4. CONCLUDING REMARKS 

 In this paper, we have attempted to review features of the 
recently identified members of the pruriceptive system (i.e. 
pruritogens, selective sensory pathways, higher central nerv-
ous system centers) involved in the pathogenesis of pruritus 
and the generation of itch sensation. Moreover, we have de-
tailed a plethora of compelling evidence that certain ther-
mosensitive and -insensitive TRP channels indeed play key 
roles in the pathogenesis of skin-derived pruriceptive itch. 

The major massages of this review can be summarized as 
follows: 

 Pruriceptive pruritus is generated by a bi-directional 
interplay of sensory neurons and various non-neuronal 
cell types of the skin 

 Pruriceptive itch is processed and transmitted by a 
highly selective pruriceptive system which shows 
significant overlapping with the cutaneous nociceptive 
system 

 On sensory neurons, certain TRP channels (especially 
the thermosensitive TRPV1, TRPV3, TRPV4, and 
TRPA1) are targets of pruritogenic mediators; 
therefore, these TRP channels may function as 
neuronal “transducers” of pruriceptive stimuli 

 Most of these TRP channels are also expressed on 
various non-neuronal cutaneous cells (e.g. 
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keratinocytes, mast cells) where their activation (via 
the release of numerous soluble factors) also 
contributes to the augmentation of the above neuron –
 non-neuronal cell communication network resulting 
in itch 

 TRP channels also regulate homeostatic skin 
functions (e.g. proliferation, differentiation, barrier 
formation, immune competence and tolerance) whose 
pathological alterations may result in the development 
of pruritic skin disorders such as e.g. AD and 
psoriasis. 

 Evidently, more extensive in vitro and in vivo studies are 
needed to uncover the exact molecular roles of TRP channels 
in the neurophysiology of itch and in the pathophysiology of 
related dermatoses. However, we strongly hope that the pre-
sented intriguing findings will foster future, highly sophisti-
cated clinical trials to explore the seemingly rich potential of 
TRP channel-targeted management of this very often devas-
tating sensory condition which impairs quality of life of mil-
lions worldwide. 
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