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Abstract: In recent years an increasing amount of oceanographic data has become available. This includes  
observations as well as data from hydrodynamic ocean models. Validation is required for establishing the necessary  
confidence in new sources of data. Generally ocean models and other data sources such as satellite imagery are validated 
by comparing the output to conventional observations or the output of established ocean models. 

Methods of comparison used in literature range from refined statistical methods to comparisons of snapshots. This work 
collects descriptions of some of the most widely used comparison methods. The capabilities and limitations of each 
method are demonstrated using examples from modelled and observed oceanographic data. The work has a particular  
focus on how to determine discrepancies on vertical gradients in the oceanographic parameters since acoustic propagation 
is sensitive to errors in the sound speed gradient. 
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1.  INTRODUCTION 

The last decades more observations have become avail-
able through satellite images and open climatology data-
bases. In addition hydrodynamic ocean models have been 
refined, for instance by adding assimilation and/or ensemble 
modelling, resulting in increased performance and improved 
resolving of both large scale circulation and mesoscale phe-
nomena. These new sources of data are often easily accessi-
ble and useful rapid environmental assessment products. 
However, new modelling and observation techniques sources 
require validation before being put to use operationally. 
Commonly used validation procedures include comparisons 
to observations or outputs from established ocean models. 
Either way nonambiguous comparison methods are required. 

 The majority of papers on ocean models contain com-
parisons of data, but few focus on how to compare. This pa-
per discusses the usefulness of different comparison methods 
with particular focus on depth variability. Many papers are 
concerned with the validity of the ocean model on the sea 
surface, e. g. sea surface temperatures, salinities, and cur-
rents. Drifting buoys measuring temperature and conductiv-
ity [1, 2], and synthetic aperture radar (SAR) data [1, 3-6] 
are easily accessible and therefore ideal for such validations. 
However, when ocean model outputs are used for e.g.  
acoustic modelling, correct representation of depth gradients 
is important. Sound speed profiles are normally derived from 
temperature and salinity model data and used for  
applications such as sonar performance modelling. 
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Accurate sound speed information is essential for acoustic 
modelling in the mid– and high–frequency ranges [7-10]. 
The acoustic propagation is directly controlled by the sound 
speed gradient [11]. Errors in the gradient may easily cause a 
shift in the location of acoustic shadow and convergence 
zones [7] and thus cause significant errors in modelled sonar 
performance. 

Most papers on ocean validation present the data that are 
compared, and the main oceanography in the area of interest. 
When comparing oceanographic data sets, information is 
required on the area, such as the characteristics of present 
water masses, dominating currents, and special features. 
Such information is essential for understanding the data sets. 
Model output depends on certain numerical parameters and 
choices, e.g. the selected turbulence model, boundary condi-
tions, and spatial and temporal resolution. Likewise observa-
tions are influenced by various premises such as measuring 
techniques, measurement errors, and spatial and/or temporal 
resolution and filtering. These conditions must be understood 
in order to explain the differences observed in a comparison. 
If a model does not take small scaled phenomena into ac-
count, then discrepancies on that scale in comparison to ob-
served data should be expected. 

Ocean models are used for a wide range of applications, 
e.g. forecasting, climate monitoring, and sonar performance. 
The choice of comparison methods should depend on the 
considered application, and the chosen methods should be 
complementary in such a way that they identify different 
types of discrepancies. The comparison methods are here 
divided into two groups; direct and statistical. 

Direct comparison methods compare two data sets on a 
one–to–one basis e.g. comparisons of time series [1, 2, 12-
15] and cross sections [2-5, 13, 14]. Direct comparison meth-
ods are useful for verifying the ocean models ability to pre-
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predict the spatiotemporal distribution of water masses and 
oceanographic features. These aspects are important in e.g. 
forecasting. 

Statistical comparison methods extract statistical parame-
ters from the data sets or their difference, e.g. moments [1, 4, 
6, 13, 16, 17], root–mean–square (RMS) error [1, 6, 12, 13, 
15, 16, 18], and correlation coefficients [1, 12, 15, 17, 18]. 
Statistical comparison methods are useful for verifying the 
statistical distribution of water masses and oceanographic 
features. This is important to e. g. determine the expected 
stress on offshore installations, and when ocean model out-
put is used as a priori information in acoustic inversion of 
the sound speed profile. 

Presenting comparison results unambiguously, requires 
care. When comparing large amounts of data, one easily gets 
lost in colours, numbers, or words. Examples of comparisons 
using both direct and statistical methods are presented using 
ocean model data and CTD measurements. The capabilities 
and limitations of each method are highlighted and demon-
strated. The ocean model data are obtained from the Norwe-
gian Meteorological Office [19]. The observations include 
both temperature and salinity data and were obtained by the 
Norwegian Defence Research Establishment. 

The intent of this review is to give an overview of widely 
used comparison methods with examples that highlight the 
main features of each method. However, this review is not 
exhaus- tive. More methods and variants of the methods in-
cluded exist in literature. Increased focus on 

2. EXAMPLE DATA SETS 

In order to illustrate the aspects of different comparison 
methods, two test cases are defined. Observed and modelled 
data from the south–west coast of Norway are used (Fig. 1). 
In test case 1 modelled data from two time steps 24 hours 

apart, 06am 24 and 25 January 2010, are compared. In test 
case 2 observed data are compared to modelled data from 
approximately the same time and place. 

The modelled data are computed by the Norwegian Me-
teorological Institute’s version of the Princeton Ocean Model 
(MI–POM) [19] which is a baroclinic, three-dimensional 
hydrodynamic ocean model. It is a primitive equation model 
containing conservation equations for mass and momentum. 
Thermodynamics are descibed by similar conservation equa-
tions for salinity and temperature. The model is set up in an 
area along the south–west coast of Norway (Fig. 1) as a 
nested submodel with horizontal resolution of 200 meters 
which is sufficient to resolve mesoscale phenomena. In the 
vertical 14 terrain following –coordinates are used. Outputs 
are given every third hour for sea surface, salinity, tempera-
ture, and currents at selected depths. MI–POM is used for 
both research and forecasting purposes. 

The observed data set consists of 113 CTD–profiles ob-
tained using a Moving Vessel Profiler during a sea trial from 
23 to 24 of January 2010. The observations were obtained by 
HU Sverdrup II, - a research vessel belonging to the Norwe-
gian Defence Research Establishment. Each profile consists 
of around 500 measurements of conductivity, temperature, 
and depth. In order to compare to model data, the observed 
data are averaged over a depth range of ±2 meters in order to 
get representative values at selected depths. The model area 
does not cover the location of the westernmost observations. 
These are therefore left out. 

Before studying the data sets one should always look at 
the main oceanography in the area. 

In the test area chosen (Fig. 1), two distinct water masses 
are present. The Norwegian Coastal Current supplied with 
continental fresh water runs northwards along the coastline 
from the Baltic Sea. A fraction of the North East Atlantic 
Current runs into the Norwegian Trench north of the test 
area, approximately following the 200 meter depth contour 
all the way to Skagerak [14, 20, 21]. Atlantic water is saline 
and relatively warm while the water from the Baltic Sea is 
colder and less saline due to fresh water input from fjords 
and rivers. 

At the front separating these two water masses a compli-
cated system of eddies and jets appear. Modelled current is 
shown in Fig. (2) for the two time steps in test case 1. During 
the model period the eddies move slowly northwards and 
change shape slightly, i.e. the eddy with the northern bound-
ary at 60° 20’ N at 06am 24 January moves its northern 
boundary to 60° 30’ N during 24 hours. To place such eddies 
correctly in ocean models is difficult. MI–POM seems to 
reproduce the right amount and strength of eddies [14], but 
fails to place eddies correctly in space and time. 

3. METHODS OF COMPARISON 

Comparison methods are here divided into two groups: 
Direct and statistical methods. Direct methods are one-to-one 
comparions of data sets. Statistical methods compare statisti-
cal properties extracted from the data sets. 

In the following sections different types of comparison 
methods are demonstrated using examples from the two test 
cases described in Sec. 2. 

 

Fig. (1). The modelled data set is taken from locations inside the 
red box in test case 1 and inside the blue box in test case 2. Profiles 
are measured at the locations of the dots. Comparison methods are 
needed in order to handle the growing amount of oceanographic 
data. Vertical profiles of temperature and salinity at two positions 
for test case 1 (red) and test case 2 (blue). 
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3.1. Direct Comparison Methods 

Direct comparison methods compare state variables from 
two data sets at specific times and locations. Direct compari-
sons of either time series or two dimensional plots such as 
vertical or horizontal cross sections, are frequently used. 
This can be done either by presenting snapshots of each data 
set or subtractions of one set from the other [5, 14]. 

These intuitive methods allow for detailed studies of the 
ocean models’ ability to locate oceanographic phenomena 
such as eddies and fronts. 

3.1.1. One Dimensional Plots 

Observations at one or several selected locations are easy 
to perform using buoys or other moored platforms. 

Direct comparison of time series at a certain location is 
the most used comparison method in literature [1, 2, 12-15]. 
Time series may be used to verify that specific features are 
predicted at the observation location at the right time, and to 
study local effects of time variability. 

Other one dimensional plots such as vertical profiles at 
certain locations at a given time are also compared in litera-
ture [6, 14, 22]. Vertical profiles may be used to verify the 
skill of the ocean model to predict depth variability which is 
important for acoustic purposes. However, vertical profiles 
at a few locations are not sufficient to validate an ocean 
model. Comparisons on a larger scale are required. 

Example of vertical profiles at two positions are shown in 
Fig. (3). In test case 1 both modelled temperature and salin-
ity increase slightly in the whole water column during 24 
hours at both positions indicating more Atlantic water in the 
area. In test case 2 the observed profiles have larger depth 
gradients. At 4° 25’ E and 59° 55’ N a sudden increase in 
both temperature and salinity is observed identifying a dis-
tinct pycnocline. 

3.1.2. Two Dimensional Plots 

Two dimensional plots are commonly used in literature. 
Examples include horizontal cross sections (i.e. map of sur-
face or specific depth level) [4, 5, 13, 14, 22], vertical cross 
sections [2, 3, 14, 22], and vertical profiles as a function of 
time [1, 16]. 

Cross section comparisons are easily understood and are 
efficient to locate problem areas. A downside with such vis-
ual comparison methods is that if not carefully chosen, the 
colours and dynamics used in the plotting may bias the inter-
pretation, e.g. since the human eye separates some colours 
better than others [23]. 

Cross section comparisons may be performed using side–
by–side comparison of snapshots and difference plots, or 
plots containing both observations and modelled data. A 
comparison by subtracting observed from modelled values, 
may result in relatively large discrepancies [14], since differ-
ence plots are very sensitive to phase differences. Relatively 

 

Fig. (2). Modelled current at 06 am 24 (left) and 25 (right) January 2010. The red square indicates the boundary for data from test 
case 1. 

  

Fig. (3). Example of one dimensional plots at selected positions.  
Vertical profiles of temperature and salinity  at  two positions  for test  case 1 (red)  and test  case 2 (blue). 
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small phase differences in the compared data sets may have a 
relatively large impact on difference plots. This method 
therefore efficiently determines if phenomena, e.g. eddies, 
are collocated in the compared data sets, but has low toler-
ance for errors. This method is useful for validating forecast 
models. 

In test case 1 differences up to ±1.5° C in temperature and 
±1 psu in salinity are achieved during 24 hours of model 
time (Fig. 4). The pattern of the temperature and salinity 
field mirrors the eddy structures. Some eddies contain cold 
and relatively fresh water, while others contain Atlantic wa-
ter with warmer and more saline water. Since the eddies 
move in time, discrepancies may occur due to phase errors, 
i.e. eddies and meanders located at the right place, but not at 
the right time. 

In test case 2 both the observed data and modelled data 
show that there exists a front between warm saline water and 
cold less saline water (Fig. 5). Unfortunately, the amount of 
observed data is limited and thereby it is difficult to deter-
mine if the data are shifted or if the data sets represent the 
same amount of eddies. At 60° 20’ N the pycnocline lies at 
about 50 meters depth both in observed and in modelled 
data, but is more distinct in the observations (Fig. 6). In this 
vertical cross section, differences up to ±2° C in temperature 
and ±0.5–1.5 psu in salinity are observed. The largest differ-

ences are found at the surface and at the bottom indicating 
discrepancies in the gradients. As with vertical profiles, ver-
tical cross sections are useful for evaluating the ocean mod-
els’ ability to predict oceanography useful for acoustic mod-
elling purposes. 

3.1.3. Scatter Plot 

In scatter plots state variables in two data sets from se-
lected locations are plotted versus each other at the same 
locations [6, 14]. Scatter plots are useful to investigate if a 
spatiotemporal correlation exists, and give a visual impres-
sion of how well two data sets agree. An identity line along y 
= x is often drawn as a reference. If the two data sets agree, 
the scatters concentrate in the vicinity of the identity line. In 
order to do such one–to–one comparisons, resampling the 
data in time and space is often required. Since location is not 
explicitly read from the plots, scatter plots do not uncover 
which parts of the domain are causing eventual deviations. 

In test case 1 scatter plots show that the spatial correla-
tion between the data at the two time steps is poor. (Fig. 7). 
Phase errors result in a swarm of scatter around the linear 
regression lines at each depth. There seems to be a closer 
linear relation at more shallow depths, especially for salinity. 
The lack of spatiotemporal correlation is probably due to 
phase differences, but the reason is not revealed by scatter 
plots. 

  

Fig. (4). Example of horizontal cross section plots for test case 1.  
Horizontal cross sections at 50 m depth for temperature (left set) and salinity (right set) at 06am 24 (first) and 25 (second) January 2010, and 
the difference between these two fields (third). 

 
Fig. (5). Examples of horizontal cross section plots for test case 2.  
Horizontal cross sections for temperature (left set) and salinity (right set) at 50 m (first) and 200 m (second) depth. The dots represent the 
observed data taken from 10pm 23 January to 9pm 24 January. The field represents the modelled data at 06am 24 January 2010. 
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Fig. (6). Example of vertical cross section plots for test case 2.  
Vertical cross sections from a line at 60° 20’ N for observed (upper), modelled (middle), and the difference between observed and modelled 
(lower) temperature (left) and salinity (right). The observations are taken at 11pm 23 to 02am 24 January 2010. The simulations are from 
00am 24 January 2010. 

 

Fig. (7). Example of scatter plots for test case 1.  
Scatter plots of temperature (upper) and salinity (lower) for four selected depths. Modelled data from 06am 24 January is on the first axis and 
from 06am 25 January on the second axis. Each plot includes two reference lines; the dashed line is a regression line based on the data, while 
the solid line represents the identity line. 

  

Fig. (8). Example of scatter plots for test case 2.  
Scatter plots of temperature (left) and salinity (right) based on observed and modelled data at corresponding locations and times. 
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In test case 2 scatter plots show that the modelled tem-
perature and salinity are too high in the upper layers and too 
low in the deeper layers (Fig. 8). Thereby the model under- 
estimates the depth gradients. The plots also clearly show 
that the variability in the observations are significantly higher 
than in the modelled data implying too strong mixing in the 
modelled data. 

Scatter plots may also be used to identify the relation be-
tween two state variables, e.g. salinity and temperature. Scat-
ter plots are able to reveal not only linear, but also nonlinear 
relationships. In test case 2 the observations indicate a linear 
relationship between temperature and salinity except for  
water masses with high salinity especially at larger depths 
(Fig. 9). The relation in the model is similar, but with smaller 
interval. 

3.2. Statistical Methods 

Statistical methods compare statistical attributes instead 
of oceanographic data directly. Statistical methods may be 
divided into two groups; the methods that take the spatio-
temporal distribution into account, and the methods that dis-
regard the spatiotemporal distribution. Examples of the first 
group of methods include the correlation coefficient and 
root–mean–square (RMS) error. The second group include 
comparisons of e.g. moments and probability density func-
tions. 

Statistical methods allow for detailed studies of discrep-
ancies in the overall statistics of the compared data sets. 
Some of the methods give numerical values on how well the 
data sets compare, e. g. moments, RMS error, and correlation 
coefficients, while others give visual representations, such as 
probability density functions and QQ–plots. 

3.2.1. Moments 

The first two moments are extensively used in compari-
sons of two data sets [1, 4, 6, 13, 16, 17]. The mean, k , and 

standard deviation, k , at the kth depth step of N data pro-
files may be estimated as follows: 

 (1) 

where pnk is the kth depth step of the nth profile of a state 
variable. The profiles are measured or modelled in either 
time or space. In the case where only surface values are con-
sidered, k equals one. 

The mean and standard deviation are robust and easily 
understood. The mean gives a quick impression of the arith-
metic mean, and if plotted as a function of depth, it gives an 
indication of the gradient useful for acoustic purposes. Note 
that since the mean is an arithmetic average it is not the same 
as the median for skewed distributions. Standard deviation is 
the square root of the variance and a measurement of vari-
ability. Low standard deviation indicates that the data points 
are close to the mean, whereas high standard deviation indi-
cates that the data are spread out over a larger range of val-
ues. Note that local variations causing e.g. two–peaked dis-
tributions can lead to misleading values for mean and stan-
dard deviation. Therefore the moments should always be 
considered in light of the corresponding distributions. 

Fig. (10) shows an example of how statistical moments 
derived from different data sets may be compared. In test 
case 1 the means for the two data sets differ with only up to 
±0.1°C in temperature and ±0.05 psu in salinity for all 
depths. The standard deviations are around 0.4 °C for tem-
perature and between 0.1 and 0.4 psu for salinity in both data 
sets. In test case 2 the moments uncover that gradients and 
variances in the modelled data are underestimated. Notice 
that the mean profiles intersect at approximately 50 meter 
depth in the temperature data. This supports the decent 
match in the direct comparison of horizontal cross section 

  

Fig. (9). Example of scatter plots for test case 2.  
Scatterplots identifying the relation between temperature and salinity in the observations (left) and the model (right) at the same locations 
and time. 
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data at 50 meter depth made in Fig. (5), and that compari-
sons at other depths result in more obvious differences. 
Horizontal cross sections at several depths are therefore nec-
essary. 

Higher order statistical moments as skewness and kurto-
sis which are measurements of the asymmetry of the prob-
ability distribution and extreme deviations respectively, are 
more seldom used in ocean modelling. 

3.2.2. Depth Dependent Probability Density Functions 

Comparisons of probability density functions (PDF) mir-
ror the models’ ability to reproduce the correct statistics, but 
is not a measure of the models’ forecasting skill [14] since 
e.g. phase errors are not revealed in the distributions. 

PDFs may be estimated by normalised histograms. In 
comparisons the conventional use is to generate and compare 
one–dimensional PDFs using observed and modelled data at 
selected depths or averaged over depth [14, 17]. For acoustic 
purposes two–dimensional PDFs that combine depth infor-
mation with a state variable, are preferable. The scaling and 
bin widths used in the estimation of the PDFs may easily 
bias the interpretation, and must therefore be chosen with 
care. 

In test case 1 the PDFs for temperature and salinity are 
similar for the two data sets (Fig. 11) even though the 

mesoscale phenomena are shifted in time. This indicates that 
the two modelled data sets contain approximately the same 
types and quantities of water masses. 

In test case 2 there is clearly more variation in the upper 
layer in the observed data set, than in the modelled data set 
(Fig. 12). This is in accordance with the standard deviations 
in Fig. (10). The model probably mixes the two distinct wa-
ter masses in the area. It is well known that acoustic model-
ling is very sensitive to errors in the sound speed gradient 
which depends on the temperature and salinity profiles. 
Acoustic modelling is therefore sensitive to the observed 
errors in this data set. 

3.2.3. QQ–Plot 

QQ–plots compare the distributions of two different data 
sets by plotting the quantiles of each data set against each 
other. When the probability density distributions of the data 
sets are known, then the quantiles may be derived by invert-
ing the cumulative distribution function. However, for mod-
elled and observed oceanography the exact distribution is 
rarely known. If the two data sets are of equal size, the data 
may simply be ordered and plotted against each other. In 
order to compare two data sets of different sizes, the data 
must be resampled. In test case 2 the data sets for each depth 
are first sorted in order of magnitude to compute the  

 

Fig. (10). Example of depth–dependent moments.  
The mean (upper) and standard deviation (lower) of temperature (left) and salinity (right) in test case 1 (red) and test case 2 (blue). 
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Fig. (11). Example of normalised probability density functions for test case 1. 
Probability density functions at selected depths for salinity and temperature based on modelled data from two time steps, 06am 24 
(red) and 06am 25 (black) January 2010. The bin widths are 0.1° C for temperature and 0.1 psu for salinity. 

 

Fig. (12). Example of normalised probability density functions for test case 2. 
Probability density functions at selected depths for salinity and temperature based on obser- vations (red) and modelled data (black) from 
January 2010. The bin widths are 0.25° C for temperature and 0.2 psu for salinity. 
 

probability density functions. Corresponding values for  
different probabilities were then picked as illustrated in  
Fig. (13). 

If the two distributions have a linear relationship, the 
points will approximately lie on a line. If the line is the iden-
tity line, y = x, the two distributions are identical. S-shaped 

lines indicate that one of the distributions is more skewed 
than the other, or has a heavier tail. Note that for compari-
sons of heavy tailed distributions oscillations may be ob-
served on the tails of the QQ–plot [24]. This is expected and 
does not necessarily mean that the two distributions are dif-
ferent in nature. 
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In test case 1 a clear linear relationship between the dis-
tributions of the two data sets are revealed (Fig. 14). The 
QQ-plot for temperature at large depths is flatter than the 
identity line indicating that the temperature on 25 January is 
more dispersed. For salinity there is less intermediate and 
shallow water with high salinity 25 January compared to 24 
January. This is in accordance with the horizontal cross sec-
tion plots (Fig. 4) where the saline water masses in the 

northern part of the area move out of the model area while 
less saline water is introduced in the southern part of the 
model area. 

In test case 2 the modelled temperature and salinity have 
too few low values and too few high values compared to the 
observations (Fig. 15) indicating that the observed distribu-
tion is more skewed and/or has more extreme values than the 

 
Fig. (13). Illustration of how corresponding values for two data sets with different probabilities are selected in order to create QQ–
plots. 

  

Fig. (14). Example of QQ–plots for test case 1. 
QQ–plots of temperature (left) and salinity (right) based on modelled data from two time steps, 06am 24 and 25 January 2010. 

 

Fig. (15). Example of QQ–plots for test case 2. 
QQ–plots of temperature (left) and salinity (right) based on modelled data and observations from January 2010. 
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modelled distribution. This is confirmed by the probability 
density functions in Fig. (12). 

Note that QQ-plots should not be confused with scatter 
plots. Scatter plots compare data at the same location, while 
QQ–plots compare distributions. In test case 1 a swarm of 
scatter is shown in the scatter plots (Fig. 7) indicating low 
spatiotemporal correlation, while the QQ-plots reveal (Fig. 
14) a clear linear relationship between the distributions indi-
cating that the distributions of the two data sets agree to a 
great extent. The QQ-plots do not contain any spatiotempo-
ral information. 

3.2.4. RMS Error 

Computing the root–mean–square (RMS) error is a 
widely used method to determine the discrepancies between 
two data sets [1, 6, 12, 13, 15, 16, 18]. The RMS error is 
frequently used as an objective method to support hypothe-
ses based on direct comparisons of time series or cross sec-
tions. 

The RMS error of the kth depth step is estimated as fol-
lows: 

 (3) 

where 
  
P

nk

(1)
 and 

  
P

nk

(2)
 represent two data sets. Typically, n rep-

resents a certain location or time.  

This is similar to the computations in difference plots 
(Sect. 3.1.2), but here the results are averaged over all sam-
ples and outliers are exaggerated due to the squaring. Higher 
ordered differences can also be used, resulting in even more 
pronounced effects from outliers. In literature squared differ-
ences appear to be the most popular choice. 

Fig. (16) shows an example of an RMS error plot as a 
function of depth for the example data sets. In test case 1 
RMS errors of up to 0.5° C in temperature and 0.4 psu in 
salinity appear due to phase differences. In test case 2 larger 
RMS errors occur. Notice that the errors are larger at shallow 
depths. Concerning temperature, the smallest error is found 
at 100 meter depth even though the mean has the smallest 
difference at 30 meter depth (Figs. 3.2.1). RMS error is in-
fluenced more strongly by outliers than the difference of the 
means. The standard deviation is far lower at 100 meter 
depth than for 30 meter depth in the observed values. This 
results in more outliers at 30 meter depth than at 100 meter 
depth which has a considerable impact on the RMS error. 
Studying a single statistical attribute is therefore not recom-
mended as this may give the wrong impression. 

3.2.5. Correlation Coefficient 

The correlation coefficient is an often used method to 
compare linear trends of two data sets [1, 12, 15, 17, 18]. As 
with the RMS error, the correlation coefficient is used as an 
objective method to support hypotheses based on direct 
comparisons of time series. 

The correlation coefficient for the kth depth step is esti-
mated as follows: 

 (4) 

As with the RMS error, n represents a certain location or 
time. The numerator contains the covariance [25] between 
two data sets, while the denominator contains the product of 
the standard deviations of each series. Two completely un-
correlated series have a covariance of zero. Two completely 
correlated series will have a covariance equal to the product 
of their standard deviations, resulting in a correlation coeffi-
cient of one. The correlation coefficient captures the amount 

 

Fig. (16). Example of depth dependent RMS and correlation coefficient. 
The RMS difference (left) and correlation coefficient (right) in test case 1 (red) and test case 2 (blue). 
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of noise in the scatter diagram and if the direction of a linear 
relationship, if any, is positive or negative (Fig. 17). How-
ever, the correlation coefficient does not capture the slope of 
the linear relationship nor any nonlinear relationship unless 
the distribution is skewed. 

Fig. (16) shows an example of the correlation coefficient 
as a function of depth for the example data sets. In test case 
1, there seems to be a linear relationship in the scatter dia-
gram (Fig. 7) with less noise for shallow depths. This is cap-
tured by the correlation coefficient which is larger at shallow 
depths. In test case 2, there seems to be a weak nonlinear 
relationship in the scatter diagram (Fig. 8). The correlation 
coefficient depends on the linear relationship and the amount 
of noise, and is therefore very low. For temperature the cor-
relation coefficients are around zero for 100 meter depth and 
more. This reflects the seemingly random scatter for these 
depths. The negative correlation coefficient that appears for 
salinity at some depths, is due to the negative change in di-
rection of the slope. 

3.2.6. Taylor Diagram 

A Taylor diagram compactly presents normalised stan-
dard deviations, correlations, and bias-removed RMS–
differences between two data sets [15, 18]. The Taylor dia-
gram is useful for simultaneous comparisons of different 
data types in the same plot, and is particularly useful for effi-
cient comparison of performance of different ocean models 
[18]. 

The distance from the origin yields the normalised stan-

dard deviations given by 
 

K
 = 

k

k
(1)

 where the standard de-

viations are normalised with respect to data from data set 
one. Data with the same standard deviation as data set one, 
are then located on the unit circle. 

The azimuth angle represents the correlation coefficient 
estimated using Eq. 4. Along the horizontal axis, the correla-
tion coefficient is 1 to the right of the origin and -1 to the left 

of the origin. Along the vertical axis, the correlation coeffi-
cient is 0. High correlation requires a good one–to–one com-
parison. 

The Euclidian distance from the reference point, repre-
sents the bias–removed RMS difference, which is subtly 
different from the RMS error described earlier. The bias–
removed difference for the kth depth step is given by: 

 (5) 

The bias–removed RMS difference depends on both cor-
relation and standard deviation [18]. 

Fig. (18) shows a Taylor diagram for test case 1. Data se-
ries for each combination of depth and data type are consid-
ered here. Each comparison results in a single dot in the Tay-
lor diagram. Almost all the dots lie in the vicinity of the unit 
circle, indicating that the standard deviations from the two 
data sets are similar. The exceptions are at shallow depths 
for salinity and deep depths for temperature. This is in ac-
cordance with the standard deviation in Fig. (10). The corre-
lation coefficient is smallest for temperature at larger depths 
and highest for salinity at shallow depths in accordance with 
the correlation coefficient in Fig. (16). The poor correlation 
for temperature at larger depths results in a high bias–
removed RMS difference due to phase differences. 

Fig. (19) shows a Taylor diagram for test case 2. The 
model clearly underestimates the standard deviation, particu-
larly at shallow depths. This is in accordance with what was 
observed in Sect. 3.2.1. Due to misplacement of mesoscale 
phenomena, the correlation is poor. The correlation for salin-
ity is better than for temperature. Observe that the salinity at 
75 meter depth has approximately the same bias–removed 
RMS difference as at 10 meter depth. At 75 meter the bias–
removed RMS difference is due to poor correlation, while at 
10 meter depth the standard deviation is too low. 

 

Fig. (17). Illustration showing the RMS error and correlation coefficient, R, for different scatter diagrams. The extent the scatter 
deviates from the identity line indicates the size of the RMS error, while the deviation from the regression line indicates the correlation 
coefficient. x and r( ) are randomly distributed gaussian functions with zero mean and standard deviation one and  respectively. 
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Fig. (18). Example of Taylor diagram for test case 1. 

 

Fig. (19). Example of Taylor diagram for test case 2. 
 

The Taylor diagram showing normalised standard devia-
tions (distance from origin), correlations (azimuth angle), 
and bias removed RMS differences (euclidian distance from 
reference point) between modelled data from two time steps, 
06am 24 and 25 January 2010. The reference point applies 
for data from the last time step. 

The Taylor diagram showing normalised standard devia-
tions (distance from origin), correlations (azimuth angle), 
and bias removed RMS differences (Euclidian distance from 
reference point) between modelled data and observations 
from January 2010. The reference point applies for all ob-
served values. 

3.3. Discussion 

Various comparison methods have been applied on two 
different test cases taken from the south west coast of Nor-

way. Since the methods complement each other, the results 
from the different methods should be discussed in combina-
tion. 

In test case 1 two time steps, 24 hours apart, from the 
same ocean model are compared. The statistics, such as mo-
ments and distributions, should approximately be the same 
for the two data sets. Phase differences are expected due to 
propagation of fronts and mesoscale eddies. 

Only small differences in statistical distributions are un-
covered by the depth dependent moments (Fig. 10), the prob-
ability density functions for each depth step (Fig. 11), and 
the QQ–plots (Fig. 14). These methods highlight different 
aspects. The moments are robust and easily understood, but 
do not fully describe the statistical distribution. Probability 
density functions give a visual comparison of the distri-
butions and information on all the moments. The scaling and 
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bin widths used in the estimation may easily bias the inter-
pretation, and must therefore be chosen with care. QQ–plots 
give a visual representation of how well the distributions 
compare, but include no information on the individual 
distributions or moments. For applications that require 
accurate depth variability, these comparisons should be 
carried out for each depth. The statistical representation of 
the depth gradient may be assessed this way. 

Comparisons of horizontal cross section plots (Fig. 4) 
clearly show the presence of phase differences, but leave the 
reader to interpret the extent of the differences. RMS error 
and correlation coefficient values compliment the cross sec-
tion plots by providing objective estimates of the differences. 
While the RMS error gives the averaged squared difference 
between the two data sets, the correlation coefficient com-
pares the trends (Sect. 3.2.4 and 3.2.5). Scatter plots effi-
ciently show the lack of spatiotemporal correlation, but as 
for RMS error and correlation coefficient plots, scatter plots 
do not give any clear indications of the cause. Neither of 
these methods give any indication of how well the depth–
gradients compare. Vertical cross sections or profiles (Fig. 3) 
may be used to aquire information on how well the depth 
gradients compare at specific locations. 

Taylor diagrams efficiently pile the information from 
bias–removed RMS–differences, correlation, and standard 
deviation in the same plot. The main advantage of this 
method is the efficient representation that allows for quick 
comparison of different data sources, e.g. different ocean 
models. 

Test case 2 includes an observed and a modelled data set. 
The modelled data are extracted at approximately the same 
times and locations where the observations were made. The 
model is not expected to successfully determine the exact 
locations of eddies and fronts, thus phase differences are 
expected. Also larger differences in the statistical distribu-
tions are expected compared to test case 1. 

Due to the low spatial resolution of the observations, it is 
difficult to get a clear picture of the extent of the phase dif-
ferences in the horizontal cross section plot (Fig. 5). The 
correlation coefficient and RMS error indicate poor compari-
sons. A quick study of the moments (Fig. 10) shows that the 
model grossly underestimates the mean depth gradients and 
also the standard deviation, particularly at shallow depths. 
Errors in the mean will typically influence the RMS error, 
while high standard deviations indicate the presence of noise 
that lowers the correlation coefficient (Sect. 3.2.5). This in-
dicates that the poor correlation coefficient and RMS error 
estimates are due to erroneous statistical representation of 
the oceanographic parameters in the model. The depth de-
pendent PDFs (Fig. 12) indicate that a probable cause is that 
the model mixes the different water types too strongly. Too 
strong mixing is also a plausible explanation for the ob-
served discrepancy in the gradient. 

For acoustic applications, correct representation of depth 
gradients is essential. Many of the methods discussed, re-
vealed that the example model underestimates the vertical 
gradients. It is possible, but not straight forward to observe 
this error in the vertical cross section comparison (Fig. 6), 
but the statistical comparison methods, particularly the mean 

moment (Fig. 10) and depth dependent PDFs (Fig. 12), cap-
ture this discrepancy more clearly and produce well-arranged 
plots that are easy to draw conclusions from. Also, the statis-
tical comparison methods present results from a larger 
amount of data than the vertical cross section plot without 
cluttering the presentation. 

4. SUMMARY 

Ocean models are used for a wide range of applications. 
To gain confidence in an ocean model, validation is required. 
The choice of comparison methods should depend on the 
considered application, and the chosen methods should be 
complementary in such a way that they identify different 
types of aspects of the present discrepancies. 

A selection of comparison methods used in literature 
have been illustrated and discussed. The advantages and 
limitations of each method are highlighted and demonstrated 
using data from two different test cases. In the first test case 
data from two different time steps, 24 hours apart, of the 
same hydrodynamic ocean model are compared. The com-
pared data sets have similar statistical distributions, but due 
to propagation of water masses and oceanographic features, 
the geographical distribution differs (phase differences). In 
the second test case modelled data are compared to observed 
data. The compared data sets have both discrepancies in sta-
tistical distributions as well as phase differences. The abili-
ties of the different comparison methods to detect and de-
scribe these differences are discussed. 

Direct comparison methods are intuitive. Popular meth-
ods include visual comparisons of time series and cross sec-
tions. Such plots may be used to validate the predicted geo-
graphical distribution of water masses, fronts, and eddies. 
These aspects are important in e.g. forecasting. 

Time series at certain locations are easy to observe. 
Comparison of time series is therefore perhaps the most used 
comparison method in literature. Vertical profiles may be 
used to identify local placement of e.g. the pycnocline. These 
one dimensional comparisons are useful to study local phe-
nomena, but comparisons on a larger scale are required to 
validate an ocean model. 

Cross section comparisons give a quick and intuitive pic-
ture of the presence and extent of phase differences, but do 
not give any indication of present statistical errors. Compari-
sons of vertical and horizontal cross sections and vertical 
profiles as a function of time can be plotted giving a visual 
representation of the overall results. Cross section compari-
sons may be performed using side–by–side comparison of 
snapshots, difference plots, or plots containing both observa-
tions and modelled data. 

In scatter plots state variables in two data sets are plotted 
versus each other at the same locations. Scatter plots there-
fore effectively give a visual impression of how well the two 
data sets compare, but do not give any information of what 
parts of the model domain are causing the problems. 

Statistical comparison methods effectively compare large 
data sets by reducing the dimensionality of the comparison 
problem, e.g. by averaging over time or a spatial dimension. 
Popular methods in literature include the RMS error, the 
correlation coefficient, and comparisons of moments. These 
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values are often used to objectively back up direct compari-
son methods. 

The first two moments give the mean and standard devia-
tion respectively. The probability density function gives a 
visual representation of the distribution of a state variable. 
QQ–plots give a visual impression of how well two probabil-
ity distributions compare. For acoustic applications, and in 
particular inversion schemes where ocean model output is 
used as a priori information, comparisons of mean profiles 
and depth dependent probability density functions are pre-
ferred. These methods validate the predicted statistical dis-
tributions and depth behaviour of water masses, but are un-
suitable for validation of predicted geographical distribution 
of water masses. 

The RMS error is a measure of the discrepancies between 
two data sets, while the correlation coefficient is a numerical 
value of how well trends in the compared data sets follow 
each other. Taylor diagrams compactly present normalised 
standard deviations, correlations, and bias–removed RMS–
differences between two data sets, and are useful for simul-
taneous comparisons of different data types in the same plot. 
The efficiency of the representation also allows for quick 
comparisons of more than two data sets. 

This review is not exhaustive. More methods and variants 
of the methods included exist in literature. The intent of this 
work is to give the reader an overview and description of 
widely used comparison methods with examples that high-
light the main features of each method. Further focus on 
comparison methods is important for validating the increas-
ing amount of available oceanographic data, such as refined 
ocean models and satellite data. 
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