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Abstract: Background: Tumor progression is characterized by high mutation rates, each mutation potentially generating 

an “alarm” signal. The brain is the main integrator of signals arising in the periphery from changes in homeostasis. We 

hypothesized that tumors growing at a distant site might be a stimulus strong enough to be molecularly sensed and inte-

grated by the brain.  

Results: Transcriptome analysis of the mouse hypothalamus, midbrain, and pre-fontal cortex at different time points fol-

lowing administration at a distant site of mammary, lung and colon cancer cells evidenced cancer-type and brain-region 

specific changes in gene expression. On the contrary, no significant gene expression changes were detected in the liver. 

The hypothalamus was the region with the largest number of differentially expressed genes. On the array and off the array 

analysis of hypothalamic samples using real time PCR confirmed changes in genes associated with synaptic activity and 

sickness response, respectively. Gene clustering allowed the discrimination between each cancer model and between the 

cancer models and arthritis.  

Conclusions: The present data provides evidence of changes in gene expression in the brain during progression of distal 

tumors and arthritis highlighting a potential link between distal pathological processes and the brain.  

INTRODUCTION 

 Tumor progression is characterized by high genetic in-
stability, each mutation producing a new genetic clone that 
will potentially promote an “alarm” signal inducing the re-
cruitment and activation of immune responses [1, 2]. In a 
simple view, thousands of “alarm” signals might be pro-
duced during the time course of tumor development before it 
is detected in the clinics [2]. The nervous system maintains 
body homeostasis by sensing and reacting to signals that 
reach a certain threshold [3-7]. Maintenance of homeostasis 
not only involves adaptations to changes due to normal or-
gan function but also during disease states. The brain can 
sense immune peripheral events through soluble compounds 
or the vagus nerve, and can react for example through activa-
tion of the hypothalamus-pituitary-adrenal axis, resulting in 
the modulation of an ongoing immune response [8, 9]. In 
addition, the autonomic nervous system innervates lymphoid 
tissues hardwiring the brain and peripheral organs involved 
in immune reactions such as the spleen and the thymus, pro-
viding the possibility of an immediate sensing by the brain of 
events related to peripheral diseases [6, 10].  
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 Few studies in animal models suggested the potential 
involvement of the central nervous system (CNS) in tumor 
growth. For instance, injection of tumorigenic cells has been 
shown to activate neuroendocrinal axes [4], and mice bearing 
tumors showed enhanced norepinephrine and serotonin ca-
tabolism and increased tryptophan levels in the brain [11]. 
These few studies suggesting a potential link between tumor 
development and the CNS led us to hypothesize that the 
presence of “foreign” tumorigenic cells at a distal site could 
be a stimulus strong enough to be molecularly “sensed” by 
the brain, long before growing tumors become noticeable by 
conventional methods. We report here a comprehensive mi-
croarray analysis to address whether specific changes in gene 
expression are triggered predominantly in discrete brain re-
gions in the presence of a tumor growing at a distal site. The 
present data shows changes in the expression levels of a set 
of genes in the brain as early as 18 h after administration of 
different types of tumor cells. Only a low percentage of dif-
ferentially expressed genes were shared among the different 
tumor models. The hypothalamus showed the largest amount 
of differentially expressed genes. On the array and off the 
array analysis highlighted genes involved in neuronal con-
nectivity and sickness behavior, respectively. Gene cluster-
ing and leave-one-out cross-validation showed that the dif-
ferent tumors can be discriminated using the brain gene ex-
pression profile. Moreover, clustering of brain expressed 
genes also segregated all arthritic samples from each of the 
three tumor models with perfect accuracy.  
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MATERIALS AND METHODOLOGY 

In Vivo Studies 

 CT-26.WT colon cancer, 4T-1 mammary cancer, and 
LL/2(LLC1) lung cancer cells were obtained from the 
American Type Culture Collection (ATCC, Manassas, VA). 
Eight week old male and female Balb/c and male C57Bl/6 
mice housed in HEPA filtered air racks (Tecniplast, Italy) 
with food and water ad libitum were injected s.c. with 1x10

6
 

CT-26.WT, 1x10
5
 4T-1 or 1x10

6
 LL/2(LLC1) cells in PBS; 

control mice were injected with PBS alone. Mice were killed 
by cervical dislocation and brains were dissected; in some 
experiments, also the liver was extracted. All tissue samples 
were frozen in dry ice and stored at –80°C until RNA extrac-
tion.  

Burrowing 

 This test was essentially performed as described [12]. 
Briefly, two hours before the start of the dark period, mice 
were placed in individual plastic cages containing plastic 
tubes (20 cm long, 4 cm diameter) filled with pellets. The 
lower closed end was resting on the cage floor. The open end 
was supported 3 cm above the cage floor with screws, pre-
venting the contents from being non-purposefully displaced. 
The tube was filled with 300 g of pellets. The weight of pel-
lets remaining in the tube was measured 16 h later, from 
which the weight displaced (burrowed) was calculated. As 
positive control for sickness behavior symptoms, similar 
experiments were done with mice injected with LPS at a 2 
mg/kg dose. These mice showed no borrowing activity.  

Forced Swimming Test 

 Mice were individually placed in cylinders (19 cm in 
diameter and 25 cm high) filled with water (24 ± 1 °C) up to 
15 cm deep. Time to immobility was recorded [13]. Immo-
bility was considered when mice only did minimal move-
ments to maintain floatability. After the end of the experi-
ment, mice were dried with a towel and placed back in the 
cage. 

Microarray Studies 

 Total RNA was extracted using TRIzol Reagent (Invitro-
gen, Carlsbad, CA). Poly A+ RNA was obtained from total 
RNA using the MicroPoly(A) Pure kit (Ambion, Austin, 
Texas). RNA was reversed transcribed using Superscript II 
RT (Invitrogen) with oligo dT primers and random primers, 
both in the presence of aa-dUTP (Sigma Co., St Louis, MO). 
The cDNA was labeled with Cy3 or Cy5 dyes (Amersham 
Pharmacia, Sweden), resuspended in DMSO, and incubated 
for 1 h at room temperature in the dark. The probes were 
purified using the SNAP Gel Purification Kit (Invitrogen) 
following manufacturer instructions with the following 
modification: at the initial step, 500 μl of loading buffer 
(2.25 M guanidinium HCl in 70% isopropanol) were added 
to the sample, placed in a SNAP column and incubated for 4 
min before the first centrifugation. 50-mer mouse 10K Oligo 
Set (MWG, Germany) were printed on UltraGAPS slides 
(Corning, Acton, MA) using a Virtek Chipwriter Arrayer 
(Virtek Vision International Inc. Ontario, Canada). Printed 
slides were prehybridised at 42°C in 2X SSC, 0.1% SDS, 1% 
BSA. Labeled probes were mixed with hybridization buffer 

containing 30% formamide and hybridized overnight at 
42°C, using a dye swap design. 

Real-Time PCR 

 0.5 μg of mRNA was reverse-transcribed using 
oligo(dT)12-18 (Invitrogen) and Superscript II RNaseH

-
 Re-

verse Transcriptase (Invitrogen) following manufacturer 
instructions. Quantification of cDNA was performed using 
Oligreen ssDNA Quantitation Reagent (Invitrogen). Primers 
were designed using the Primer3 program (http:// 
www-genome.wi.mit.edu/cgi-bin/primer/primer3.cgi/primer3_ 
www.cgi). Each gene was analyzed by comparing with two 
housekeeping genes (beta2-microglobulin and beta-actin) in 
96-well optical plates on an iCycler IQ Real-Time Detection 
System (Bio-Rad) using SYBR Green I (Invitrogen). Melting 
curves of all samples were always performed. Each target 
gene was assessed 2 – 4 times, each time in triplicates. The 
initial template amount in fluorescent units (T0), was esti-
mated as described in [14]. Briefly, T0 was calculated as T0 = 
TCT (1+E)

-CT
, where TCT is the amount of product (fluorescent 

units) at the threshold cycle CT. The intrinsic amplification 
efficiency (E) was calculated as 
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and the parameters Tm and b were estimated by fitting the 
amplification data to the function 
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by non-lineal regression.  

 Differential expression was assessed by ANOVA of 4 to 
6 experiments. 

Data Analysis  

 All the data processing was performed with the R System 
v2.2.1 (The R Project for Statistical Computing). 

Data Acquisition and Image Processing 

 The slides were scanned with a Chip-Reader (Bio-Rad, 
Hercules, CA) at 10 μm resolution and 16 bit pixel depth, 
and images were analyzed with VersArray Analyzer soft-
ware v4.5 (BioRad).  

Data Filtration and Normalization 

 The data was filtered to eliminate dust derived data 
points (spots with size less than 75 pixels or with a mean to 
median correlation of less than 80% [15], saturated data 
points (spots with a proportion of saturated pixels greater 
than 20%), and low signal data points (spots with signal to 
background ratio below 1.2). 

 Data was quality-filtered, and slides were normalized 
using an intensity- and location-dependent algorithm. 
Briefly, the intensity ratio for spot i (Mi = log2 Ri/Gi) was 
replaced by the residuals of a locally-weighted 3D-
polynomial surface regression Mi = f(xi, yi, Ai), where (xi, yi) 
is the location of spot i in the slide and Ai is the mean spot 
intensity; i.e. Ai =  · log2 Ri/Gi. The 3D-normalization 
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scheme was applied sequentially in two steps, first on the 
entire slide to eliminate bias that span across grids, and then 
on each grid separately, to eliminate print-tip dependent bias. 
Locally weighted 3D polynomial regression was carried out 
with the loess function of the R-system. M values from dye-
swap (technical) replicates were weighted by their quality 
scores (QC) and averaged. QC was defined as the ratio of 
spot area to spot perimeter scaled in a range (0, 1]. The re-
sulting expression set was scale-normalized so that each 
sample has the same median absolute deviation [16]. 

Analysis of Biological Replicates 

 We employed a mixed effects experimental design with 
factor treatment (levels: tumor and control) and random ef-
fect experiment (levels: 1-4) without replication. The statisti-
cal significance for the treatment factor was estimated by 
ANOVA [17]. For the identification of genes affected by the 
factor treatment at either time point, we added the factor time 
(levels, 18, 72 and 192 h) to the previous design instead of 
performing multiple ANOVA tests, because the former had 
greater sensitivity without loss of selectivity when compared 
with multiple one-way ANOVA or t-tests [18]. To identify 
genes for which expression levels were increased or de-
creased throughout the experiment, we estimated the statisti-
cal significance for the average difference between treat-
ments by ANOVA. Genes showing a p-value < 0.05 and an 
expression change higher than 20% at least in one time point 
were considered “differentially expressed genes”. 

 For the identification of early and late response genes, we 
performed a template matching analysis using the templates 
{2, 1, 0} and {0, 1, 2}, respectively [17]. 

Functional Analysis 

 Biological Process categories of the Gene Ontology data-
base [19] enriched in differentially expressed genes were 
identified by Fisher’s exact test. Only categories with 4 or 
more genes presents in our microarray platform were in-
cluded in the analysis. Genes showing a fold change greater 
than 20% (p < 0.05) in any time point were considered as 
differentially expressed. 

Hierarchical Cluster Analysis 

 From the list of differentially expressed genes we se-

lected those showing differential responses between cancer 

models (p < 0.01, t-test). Only experimental samples with 

fewer than 40% missing values and genes with fewer than 

20% of missing values were included. For the Euclidean 

distance calculation, data was scaled as Msi = (Mi – M ) / 

SD(M), where SD is the standard deviation. Cluster analysis 

was performed using a Ward’s minimum variance agglom-

eration method [20]. 

Predictive Ability Estimation 

 Leave-one-out cross validation was performed using a 
weighted-nearest neighbor classifier (see below), and the 
area under the Receiver Operating Characteristic curve 
(ROC-score) was used to determine the separating ability of 
the classifier. The statistical significance of the ROC-score 
was estimated from a null model generated by 10,000 ran-
dom permutations of the class labels. 

 

Leave-One-Out Cross-Validation and ROC-Score Analysis 

 If there are n samples, for every sample in turn, we 
trained the classifier on the remaining n-1 samples and then 
we tested the resulting hypothesis on the sample left out. 
Classification was accomplished with a weighted version of 
the classical k-nearest neighbour method. Variables (genes) 
useful for classification were first selected from the training 
set (see below). The training set (Y) and the test set (X) were 
then standardized by dividing the variables by the standard 
deviation of Y. Next, the Euclidean distance d(y,x) between 
each of the samples y of the training set belonging to class i, 
and the test sample x were calculated. We converted dis-
tances to weights (w) by the Gauss kernel function s

-1
 (2 )

-1/2
 

exp(-d
2
 / (2s

2
)), where s is the standard deviation of the dis-

tances d. The decision function f(x) was build using all the 
samples for training the w-nn classifier, so k = M. The hy-
pothesis output value was generated as the estimated voting-
score of x belonging to class 0: f0(x) = m0

-1
 [wi (l(i) = 0)] /  

w, where l is the vector of class labels and m0 is the amount 
of samples belonging to class 0. Thus, the voting-score for 
the classes are: 
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where m0 and m1 are the amount of samples belonging to 
class 0 and 1 respectively, and M = m0 + m1. 

 We defined the decision function as D(x) = f0(x) / (f0(x) + 
f1(x)). 

 The LOO process produced n hypothesis output values 
which were compared with a given detection threshold  to 
predict the class. By varying  we can draw a curve of sensi-
tivity vs. 1-specificity of the classification, called Receiver 
Operating Characteristic (ROC) curve. The area under the 
ROC curve (ROC-score) is a measure of the separating abil-
ity of the classifier. Very good classifiers have ROC-scores 
close to 1; bad classifiers have ROC-scores around 0.5. The 
statistical significance of the ROC-score was estimated from 
a null model generated by 10,000 permutations at random of 
the class labels. The p-value of an observed ROC-score was 
computed as the fraction of randomized ROC scores greater 
than the observed score. 

 To select variables (genes) suitable for classification, we 
searched the training set for a set of genes that maximizes 
the ROC-score in a LOO process. In brief, genes were rank-
ordered according to their differential expression between 
classes using a t-test. The number of genes in the classifier 
was optimized by sequentially adding genes from the top of 
this rank-ordered list, starting at 2 genes and up to 100 
genes. The power for correct classification was estimated for 
each set of genes by the ROC-score calculated with a LOO 
performed on the training set. The minimum amount of 
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genes maximizing the ROC-score was selected as useful for 
classification. 

RESULTS  

 Changes in gene expression in discrete brain regions fol-
lowing administration of cancer cells at a distant site 

 We designed an experimental protocol encompassing 
three cancer cell types, three brain regions and three time 
points of analysis. We injected Lewis lung, CT-26 colon and 
4T1 mammary cancer cells into syngeneic mice and evalu-
ated the transcriptome in the hypothalamic, prefrontal cortex 
and midbrain regions. We selected the hypothalamus and 
prefrontal cortex since in preliminary experiments we ob-
served in these areas the highest changes in neurotransmit-
ters levels (Casalá et al. manuscript in preparation). Mid-
brain was selected due to its role in the regulation of basic 
parameters of internal homeostasis. The injected inocula led 
to tumor growth in 100 % of mice, a prerequisite for the fur-
ther studies (see below). In order to avoid the bias and poten-
tial loss of low abundant transcripts due to RNA amplifica-
tion [21], and to control for technical variability, each of the 
biological replicates was obtained from a pool of 15 mice.  

 After careful evaluation we decided to inject control mice 
with vehicle alone. Injection of control animals with normal 
cells or heat inactivated/irradiated tumor cells would eventu-
ally served as a control of non-specific responses due to the 
sole event of cell administration. However, normal cells will 
eventually die when injected in an inappropriate site sending 
signals of death by anoikis, which in turn could lead to a 
large amount of false positives/negatives results. We also 
ruled out the use of irradiated tumor cells since these cells do 
not divide, but keep secreting soluble factors that can impact 
the brain leading again to false positive/negative results. A 
similar concern was raised by the use of tumor cells super-
natant. As an example of potential false positive/negative 
results is the fact that heat inactivated tumor cells are admin-
istered to improve the immune response generated by tumor 
vaccines [22]. 

 The main concern of using sham mice as a control is that 
the entrance of foreign cells to an organism is not controlled. 
But this concern was ruled out by our experimental design 
that allowed each cancer model to become the control of 
each other in terms of gene expression induced in the differ-
ent brain regions. Therefore, if changes in CNS transcrip-
tome are independent of the cell type, these changes should 
be similar in every tumor model. On the contrary, if changes 
in CNS transcriptome are cell type dependent we should be 
able to find tumor-type specific gene signatures that dis-
criminate between tumor models. 

 Mice were sacrificed at 18h, 3d and 8d after the initiation 
of the experiment, and the transcriptional profile of the se-
lected brain regions was analyzed using a replicated dye-
swap design on printed-in-house 10 K oligonucleotide-based 
arrays. The data was obtained from at least four biological 
replicates.  

 A total of 658 differentially expressed genes were de-
tected in the three cancer models (P< 0.05). Of them, 322 
were observed in the Lewis lung cancer model, 255 in the 
4T1 mammary cancer model and 255 in the CT-26 colon 
cancer model. Fig. (1) shows the fold changes as the median 
± the 5th and the 95th percentiles among the differentially 

expressed genes (p < 0.05 and fold change > 20%). 22 % of 
the total list of differentially expressed genes showed more 
than 50 % change in transcript levels (Fig. 1A). These ampli-
tudes of changes were consistent with previous studies per-
formed with mammalian transcripts in the brain modulated 
by chronic events such as the gene expression profiles that 
differentiates sleep and wakefulness [23]. After false discov-
ery rate correction to account for multiple hypothesis testing 
(Fig. 2), it was confirmed that the hypothalamus from the 
lung tumor model was the region/model that showed the 
highest amount of differentially expressed genes. In the three 
tumor models, the hypothalamus was the region with the 
highest amount of differentially expressed genes. 

 While 10.1% of differentially expressed genes (P < 10
-8

) 
were shared by the Lewis lung and 4T1 mammary cancer 
models, only 2.9 % were shared by the Lewis lung and CT-
26 colon cancer models, and 2.6 % were shared by the CT-
26 colon cancer and the 4T1 mammary cancer models. Ac-
cordingly, lung and mammary cancer models also showed 
the highest correlation in prefrontal cortex and hypothalamus 
areas, while the colon cancer and the lung cancer models 
where the least correlated ones (Kendall rank-correlation 
analysis, data not shown). These data indicate that the lung 
and mammary cancer models, which differed in both gender 
and mice strain, showed the largest number of common dif-
ferentially expressed genes. These observations suggest that 
the different patterns of gene expression induced by the dif-
ferent models are not mice strain or gender driven, nor due to 
the amount of injected cells which differed in each model, 
but rather to the cell type, strongly supporting the experi-
mental design. 

 We realized that transcripts sets changed their expression 
levels with a peak at the 18 h time point (“early response” 

genes) and others at the 8 d time point (“late response” 

genes). We reasoned that “early response” genes might in-
clude those that changed initially due to the presence of tu-

mor cells with the subsequent offset by compensatory 

mechanisms. “Late response” genes might reflect transcripts 
sets of the established disease when the tumor is already no-

ticeable. The administration of lung cancer cells was charac-

terized by the induction of a large set of “early response” 
genes in the three brain regions with their subsequent offset, 

being the hypothalamus the region with the largest number 

of “early response” genes (Fig. 1B and data not shown). 
Also, administration of 4T1 mammary cancer cells induced a 

large number of “early response” genes in the hypothalamus 

and midbrain areas, while the cortical area exhibited an 
equivalent amount of “early” and “late response genes” (Fig. 

1B). Finally, CT26 colon cancer cells administration induced 

the largest number of changes in the levels of “late response” 
genes (Fig. 1B). Thus, each cancer model exhibited a distinc-

tive characteristic in terms of their capacity to elicit changes 

in brain transcriptome although the lung and mammary can-
cer models induced the largest changes in the number of 

“early response” genes. This data again suggest that changes 

in the CNS transcriptome are cell type-specific. 

FUNCTIONAL CATEGORIZATION OF THE DIF-

FERENTIALLY EXPRESSED GENES 

 We identified Gene Ontology (GO) biological process 
categories enriched in differentially expressed genes relative 
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Fig. (1). Differentially expressed genes in different brain regions after injection of cancer cells at a distant site. (A) Bars are the number 

of differentially expressed genes (p < 0.05 and fold change > 20%) for each tumor model and brain area (scale in left axis). Inner horizontal 

and vertical lines represent the median, and the 5
th

 and 95
th

 percentiles, respectively (scale in right axis). (B) Cumulative bars represent the 

number of “early response” genes (white) and “late response” genes (black) for each tumor model and brain region. 

 

Table 1. Gene Ontology Analysis of Differentially Expressed Genes. GO-Biological Processes Categories Enriched in Differentially 

Expressed Genes were Identified by Fisher’s Exact Test. Only Significant Categories (p < 0.05) were Included in the  

Table. Categories Belonging to the Same Ancestor were Grouped and Showed in Parentheses 

Tumor Model GO Categories Enriched in Differentially Expressed Genes 

Lung biopolymer catabolism (protein catabolism), hormone secretion (peptide hormone secretion), inner ear development (inner ear morpho-

genesis), positive regulation of protein kinase activity, second-messenger-mediated signalling (cyclic-nucleotide-mediated signalling, 

cAMP-mediated signalling), sensory perception (sensory perception of smell) 

Mammary anterior/posterior axis specification, cellular protein metabolism, DNA recombination, epithelial cell proliferation (regulation of epithe-

lial cell proliferation, positive regulation of epithelial cell proliferation), regulation of MAPK activity, regulation of transforming growth 

factor beta receptor signaling pathway, sterol transport (cholesterol transport) 

Colon apoptotic program (apoptotic nuclear changes, disassembly of cell structures during apoptosis, DNA fragmentation during apoptosis), 

cellular morphogenesis, cytolysis, DNA catabolism, hemostasis (blood coagulation), immune response (inflammatory response, innate 

immune response, immune cell activation, complement activation, humoral defense mechanism, complement activation, alternative 

pathway, complement activation, classical pathway, lymphocyte proliferation, regulation of lymphocyte activation, regulation of lym-

phocyte proliferation, T cell proliferation, regulation of T cell activation, regulation of T cell proliferation), regulation of cell activation, 

response to pest pathogen or parasite 

 

to the total microarray genes by performing a Fisher’s exact 
test (cutoff p < 0.05). The GO data base allowed the assign-
ment of less than 60 % of the differentially expressed genes. 
GO analysis highlighted the peptide hormone secretion cate-
gory that was enriched in the hypothalamic area of the lung 
cancer model (Table 1). This GO category includes two 
genes associated with synapsis: Pclo and Rims2 (data not 

shown). In addition, cAMP mediated signaling, protein ca-
tabolism, sensory perception and inner ear development were 
also identified, with the remaining statistically significant 
categories being either parents or children of these five cate-
gories in the GO hierarchy (Table 1). The hypothalamic area 
of the mammary cancer model that also showed a large 
amount of “early response” genes as the hypothalamic area 
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of the lung cancer model, exhibited more general GO catego-
ries such as cellular protein metabolism, regulation of epithe-
lial cell proliferation and DNA recombination (Table 1). 
Finally, the hypothalamic area of the colon cancer model that 
showed the highest proportion of “late response” genes 
mainly showed GO categories associated with immune re-
sponse and apoptosis. The immune response categories in-
cluded inflammatory response, complement activation, in-
nate immune response and immune cell activation (Table 1).  

Real Time PCR Validation Highlights Genes Associated 
with Synaptic Transmission/Remodeling  

 To technically validate the data we based our analysis on 
hypothalamic samples obtained from the Lewis lung cancer 
model since this region showed the largest number of differ-
entially expressed genes and because after false discovery 
rate correction for multiple testing, we found a significant 
number of differentially expressed genes in the hypothalamic 
and the prefrontal region but not in the midbrain of mice 
(Fig. 2). Real-time PCR (qPCR) validation was performed 
on annotated genes selected according to their p values in the 
microarrays, independent of the amplitude of change. Each 
target gene was assessed 2 – 4 times, each time in triplicates. 
In most cases, the same gene was assessed at different time 
points. This selection method resulted in 55% validation, 
which increased to around 80% when only samples with > 
1.3 fold amplitude change in the microarrays were consid-
ered (data not shown).  

 Table 2 shows the list of validated genes. In some cases, 
only the microarray data is shown at 8 d to evidence the 
changes in gene expression levels all along the entire ex-
periment. Few of the genes could be grouped as genes re-
lated to synaptic transmission/remodeling. That includes 
ataxin-2 (Atxn-2), a gene involved in dopaminergic transmis-
sion [24, 25], gamma-aminobutyric acid receptor-associated 
protein-like (Gabarapl2) associated with GABA transmission 
and implicated in the fusion of synaptic vesicles, [26], and 
bone morphogenetic protein 15 (Bmp15), a member of the 
TGF-beta family involved in axon guidance [27] (Table 2). 
We also validated the increased expression levels of throm-
boxane A2 receptor (Tbxa2r) an important lipid mediator 
generated during oxidative stress that was associated with 
olygodendrocytes myelination [28], contactin-2 (Cntn2), a 
gene involved in remodeling of synaptic connections [29] 
and oxytocin (Oxt) a pleiotrophic anorexigenic molecule 
known as a “satiety” and “fear” hormone also involved in 

remodeling of synaptic connections [30] (Table 2). In addi-
tion, we also validated the down regulation of the mitochon-
drial ATP subunit transcript Atp5k [31], of the fibroblast 
activation protein, fap, an integral membrane serine protease 
associated with matrix remodeling [32], the DNA binding 
protein, kin [33] and Unc84a or SUN-1, an integral protein 
of the inner nuclear membrane [34]. We also validated the 
upregulated expression of Nad kinase (Nadk), the only 
known enzyme involved in the formation of NADP(+) from 
NAD(+) and ATP [35]. None of the validated genes was 
found to be differentially expressed in the hypothalamic ar-
eas of mice corresponding to the mammary and colon cancer 
models confirming that these changes are tumor type specific 
(data not shown). The extent of validation by real-time PCR 
was similar to that reported previously for low levels of dif-
ferentially expressed genes in the brain [36]. 

Expression Analysis of Genes “of the Array” Highlights 
Genes Associated with Sickness Behavior 

 Since Tbxa2r and Oxt could also be assigned to an “in-
flammatory/immune response” category, which can trigger a 
“sickness behavior” state characteristic of disease progres-
sion including cancer [37], we decided to use real time-PCR 
to assess whether sickness behavior-associated transcripts 
(not present in the array) modified their expression levels. 
Since this process is not specific for a particular tumor type, 
we performed these studies in the three cancer models and 
brain regions. 

 Prostaglandin-endoperoxide synthase 2 (Cox-2) is a key 
enzyme in the synthesis of prostaglandin E2, a main media-
tor of cytokine-induced sickness behavior. We observed a 
slight but significant overexpression of Cox-2 at 18 h and 72 
h in the hypothalami of mice injected with the different types 
of cancer cells (Table 3). Interestingly, lung and mammary, 
but not colon cancer cells induced also a slight but signifi-
cant overexpression of Cox-2 in the prefrontal cortex at 18 h 
(Table 3). Pomc-1 levels were downregulated in the hypo-
thalamus of mice injected with the three cancer cell types 
(Table 3). On the other hand, indoleamine-pyrrole 2,3 di-
oxygenase (Indo) levels showed immediate down regulation 
in the hypothalamus of the three models but returned to non-
significantly different levels in the colon and lung cancer 
models at 8 d (Table 3). A tendency towards increased ex-
pression of arginine vasopressin (Avp) was observed in the 
hypothalami of the lung and mammary cancer models (Table 
3) Melanocortin receptor 4 and 5 (Mc4r and Mc5r) cortical 

 

 

 

 

 

 

 

 

Fig. (2). False Discovery Rate (FDR; q-value) for different brain regions datasets corresponding to the three cancer models. Genes 

showing > 1.2 fold change in expression levels were rank-sorted according to their p-value of differential expression. The figure shows the q-

value estimated from this ranked list. 
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Table 2. Validation of Differentially Expressed Genes by Real Time PCR 

Gene ID (Gene Symbol) Time Point (hr)  Array Change (%)  RT-PCR Change (%) 

18 -52.16 ± 21.5 -27.43 ± 8.5 

72 -28.06 ± 12.1 -25.31 ± 7.1 20239 (Atxn2) 

192 -2.13 ± 4.4 - 

18 -18.55 ± 10.0 -31.62 ± 7.5 

72 -6.61± 4.4 -18.8 ± 2.4 93739 (Gabarapl2) 

192 -7.31± 2.9 -19.89 ± 13.1 

18 -162.55 ± 13.3 -31.95 ± 5.9 

72 -74.80 ± 63.2 -18.89 ± 2.4 12155 (Bmp15) 

192 -13.52 ± 15.2 N.V. 

18 20.30 ± 9.1 23.07 ± 6.0 

72 8.96 ± 15.8 - 21390 (Tbxa2r) 

192 7.87 ± 0.44 - 

18 15.92 ± 1.9 40.54 ± 24 

72 7.03 ± 2.1 N.V. 21367 (Cntn2) 

192 -3.35 ± 0.7 - 

18 7.28 ± 3.9 38.54 ± 11.3 

72 7.87 ± 1.7 N.V. 18429 (Oxt) 

192 4.13 ± 0.9 - 

18 -68.88 ± 34.8 -33.3 ± 8.5 

72 -43.75 ± 23.8 -26.72 ± 5.4 11958 (Atp5k) 

192 -3.08 ± 0.9 - 

18 -5.61± 1.3 -47.34 ± 12.2 

72 -27.21± 12.5 -35.89 ± 7.8 14089 (Fap) 

192 -2.14 ± 15.8 - 

18 -38.16 ± 30.0 -26.74 ± 1.3 

72 -58.46 ± 23.7 -26.06 ± 3.6 16588 (Kin 17) 

192 N.D. - 

18 -38.34 ± 20.8 N.V. 

72 -22.91± 18.1 -42.03 ± 11.2 77053 (Unc84a) 

192 N.D. - 

18 10.45 ± 2.4 38.9 ± 20.4 

72 0.24 ± 2.1 - 192185 (Nadk) 

192 -0.38 ± 1.1 - 

18 12.76 ± 8.3 N.V. 

72 -1.53 ± 8.0 - 12843 (Col1a2) 

192 14.59 ± 6.1 N.V. 

18 8.34 ± 2.6 N.V. 

72 8.85 ± 1.3 N.V. 12909 (Crcp) 

192 -4.93 ± 1.9 - 

18 19.80 ± 3.6 N.V. 

72 4.29 ± 7.1 - 15001 (H2-Oa) 

192 6.09 ± 4.3 N.V. 

18 -39.47 ± 15.1 N.V. 

72 -37.10 ± 10.5 N.V. 18053 (Ngfr) 

192 -2.57 ± 2.8 - 

18 -12.96 ± 5.6 N.V. 

72 -13.91± 5.8 - 20499 (Slc12a7) 

192 -4.93 ± 4.4 - 

18 -8.72 ± 1.9 N.V. 

72 -0.96 ± 4.5 - 71241 (Dmrtc2) 

192 6.58 ± 5.0 - 

Data are expressed as average ± SEM. In the real time-PCR column only data corresponding to validated genes is shown (p <0,05). N.V.: non validated. - : not assessed. 
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Table 3. Real-Time PCR Assessment of Sickness Behavior Related Genes 

Gene ID (Gene Symbol) Tumor Model Region Time Point (hr) Fold Change  

Colon Ht 18 +9.8 ± 1.2* 

Mammary Cx 18 +17.3 ± 5.1* 

Ht 72 +14.3 ± 4.2* 
19225 (Ptgs2/COX2) 

Lung 
Cx 18 +24.9 ± 5.9** 

18 +23.0 ± 21.8* 
Colon Ht 

72 -10.5 ± 6.2* 

18 -35.1 ± 8.8** 

72 -17.3 ± 1.9** Mammary Ht 

192 -31.0 ± 1.4* 

18 -12.3 ± 3.5** 

18976 (Pomc) 

Lung Ht 
192 -17.3 ± 8.8* 

18 -38.4 ± 8.2** 

72 -25.0 ± 8.1* Colon Ht 

192 +7.3 ± 1.2* 

18 -43.6 ± 8.5** 
Mammary Ht 

192 -40.5 ± 13.4** 

18 -48.1 ± 7.2** 

72 -46.5 ± 10.8** 

15930 (Indo) 

Lung Ht 

192 2.0 ± 1.5 

18 +16.7 ± 2.0* 
Colon Ht 

72 -5.6 ± 3.2 

18 -56.4 ± 13.1** 

72 +6.6 ± 4.1 Mammary Ht 

192 -11.4 ± 0.5** 

 11998 (Avp) 

Lung Ht 18 -17.8 ± 6.5** 

18 +32.0 ± 7.6** 

72 +13.1 ± 9.2 Ht 

192 -35.5 ± 7.7** 

18 -32.9 ± 16.2* 

72 - 1.0 ± 1.2 

17202 (Mc4r) Colon 

Cx 

192 -27.2 ± 8.6** 

18 -2.9 ± 1.6 

72 -14.6 ± 9.5* Ht 

192 -33.7 ± 2.5** 

18 -44.8 ± 6.2** 

72 +6.2 ± 4.3 

17203 (Mc5r) Colon 

Cx 

192 -40.0 ± 7.7** 

18 +0.8 ± 1.3 

72 -0.6 ± 0.3 Colon Cx 

192 -17.4 ± 7.5* 

18 +28.3 ± 8.7** 

72 -3.0 ± 2.0 Mammary Cx 

192 -0.3 ± 0.8 

18 +32.0  ± 7.1** 

72 -62.7 ± 4.4** 

109648 (Npy) 

Lung Cx 

192 -5.0 ± 2.3 

18 -47.3 ± 25.2 

72 -45.7 ± 10.5** 16000 (Igf-1) Mammary Ht 

192 -46.4 ± 8.6** 

Data are expressed as mean ± SEM. ** statistically significant difference p<0.01, * statistically significant difference p<0.05. Ht: Hypothalamus; Cx: Prefrontal Cortex. 
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levels were essentially down regulated and mirrored one 
each other in the colon cancer model, while they showed an 
initial increase followed by a strong decrease in hypotha-
lamic levels in the same cancer model (Table 3). Interest-
ingly, we observed no differential expression of neuropep-
tide Y (Npy) transcripts in the hypothalami of the three can-
cer models (data not shown). On the other hand, an initial 
increase in Npy cortical levels was observed in the mammary 
and lung cancer models followed by a strong decrease at 8 d 
(Table 3). In mice injected with colon cancer cells, only de-
creased cortical expression of Npy was observed at 8 d  
(Table 3). We observed no differentially expressed genes in 
the midbrain in none of the cancer models (data not shown). 
Despite the changes in transcript levels we observed no evi-
dence of sickness behavior in our models as assessed by the 
burrowing and swimming tests [13, 38] (data not shown).  

No Evidence of Specific Changes in Gene Expression in 
the Liver 

 The intimate links that communicate the brain and certain 
peripheral organs led us to address the question whether 
other organs, in addition to the brain, might also show 
changes in gene expression as a result of tumor cell admini-
stration. To test this possibility, mice injected with lung can-
cer cells or vehicle were sacrificed for evaluation of changes 
in transcript levels in liver using the same set of in house-
printed microarrays. Using the same cut off than in the brain 
studies 89 genes were identified as differentially expressed. 
After assessing the 11 genes showing more than 30% change 
by qPCR, only 1 gene could be validated ( a zinc finger 
gene, AN1-type domain 2A (Zfand2a) with unknown func-
tion suggesting that the liver is not responding to the pres-
ence of cancer cells as the brain did. 

A Subset of Differentially Expressed Genes Discriminates 
Between the Different Tumor Types  

 Our previous evidence suggested that the brain changed 
the expression levels of certain sets of transcripts due to the 
presence of a growing tumor at a distant site. Thus, we 
sought to establish whether a subset of differentially ex-
pressed genes would discriminate between paired cancer 
models. Gene clustering demonstrated that with only one 
exception (hypothalamic samples of the paired colon and 
mammary cancer models) the first branch division of the 
eight analyses corresponding to each brain region and paired 
cancer models segregated the samples corresponding to the 
paired cancer models with perfect accuracy, indicating that 
gene expression profiles in the different brain regions can 
discriminate between the different cancer models (Fig. 3 and 
Supplementary Figs. 1-3). In addition, the hypothalamic re-
gion showed statistically significant predictive ability for 
discriminating between lung and colon cancer (ROC-score: 
0.98, p < 0.0001) and between colon and mammary cancer 
(ROC-score: 1, p < 0.0001). The whole experimental data 
demonstrate that the changes in the CNS transcriptome are 
cell type-specific. 

A Subset of Differentially Expressed Genes Discriminates 
Between the Different Tumor Types and Two Arthritis 

Models 

 To determine whether another distal chronic disease 
might elicit changes in brain gene expression, we assessed 

gene expression patterns in two different models of rheuma-
toid arthritis (RA). Microarray analysis identified 89, 73, and 
104 differentially expressed genes with >1.2 fold change in 
the hypothalamus, prefrontal cortex and midbrain, respec-
tively, compared with control mice. Data comparison dem-
onstrated no shared genes between RA and mice injected 
with cancer cells (data not shown). We next sought to estab-
lish if a subset of differentially expressed genes would be 
able to discriminate between cancer and RA. Clustering 
analysis demonstrated that the first branch division segre-
gated all RA samples from each of the three cancer models 
with perfect accuracy indicating that the brain can molecu-
larly discriminate the cancer models from RA (Fig. 4 and 
Supplementary Figs. 4 and 5). Similarly, analysis of the 10 
hypothalamic top-ranked genes in each of the 6 possible 
pair-wise comparisons between RA and the three cancer 
models showed a complete split between RA and cancer 
samples in the first branch strengthening the evidence that 
brain gene expression profiles are useful to discriminate be-
tween the two diseases (Fig. 5 and Supplementary Figs. 6 
and 7). The prefrontal cortex data showed predictive ability 
for discrimination between RA and mammary cancer (ROC-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Hierarchical cluster analysis of paired cancer models. 

Hierarchical cluster analysis of hypothalamic samples obtained 

from the lung and colon cancer models based on differentially ex-

pressed genes. Each column represents a sample and each row a 

single gene. Red indicates up-regulation, green down-regulation, 

and black no change. The black arrows indicate the subdivision into 

the dominant clusters of samples. Sample labels indicate disease 

model (cyan, magenta and yellow for lung, mammary and colon 

cancer models, respectively) and time point. 
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score, 0.8333; p < 0.001) and RA and lung cancer (ROC-
score, 0.8013; p < 0.001), whereas the hypothalamic data 
could be used to discriminate between RA and colon cancer 
(ROC-score, 0.9107; p < 0.001) and RA and mammary can-
cer (ROC-score, 1; p < 0.001). 

CONCLUSIONS 

 Here, we provide the first experimental evidence show-
ing that the presence of a growing tumor at a distant site in-
duces specific changes in brain gene expression. The gene 
expression profiles were specific of each cancer type and 
differed from that induced by rheumatoid arthritis suggesting 
that different chronic pathologies can elicit a different gene 
expression profile in discrete brain regions.  

 It has been postulated for years the existence of an intri-
cate network by which the nervous system can interact with 
peripheral systems. The CNS establish anatomical and solu-
ble communications with organs such as the liver, spleen, 
gastrointestinal tract and others to allow the acquisition of 
peripheral information to be integrated and analyzed. 
Moreover, the CNS and the periphery exhibit reciprocal ex-
pression of receptors and ligands not only in the nervous and 
immune cells but also in the endocrine cells as well, suggest-
ing that a bifunctional communication exists. Despite the 
fact that only a low percentage of differentially expressed 
genes were shared by the different models, the three models 
induced the largest changes in the hypothalamus confirming 

this region as the most relevant brain region involved in in-
tegrating peripheral information [6]. In this regard, a wide 
change in transcript levels associated with immune response 
was highlighted in the hypothalamic region of the colon can-
cer model as a late response at 8 days when the tumor is 
clearly noticeable. The question as to whether this response 
is specific of this tumor model because of its high intrinsic 
immunogenicity remains open but might suggest that anti-
tumor immune responses might appear late in tumor growth.  

 Functional analysis of the genes validated by RT-PCR 
highlighted a number of genes involved in synaptic transmis-
sion that showed down regulated mRNA expression. We 
observed down-regulation of Gabarapl2, a protein involved 
in vesicle transport and axonal elongation in mammalian 
neurons [26] and ataxin-2, a protein associated with spi-
nocerebellar ataxia type 2; it is of note that a subset of pa-
tients with parkinsonian phenotype responded to dopamine 
treatment suggesting a link between ataxin-2 and dopamine 
[39]. On the other hand, previous studies have shown both 
decreased dopaminergic activity and increase in DOPAC:DA 
ratio in the hypothalamus of mice injected with mammary 
tumor cells and lymphoma cells, respectively [11, 40]. 
Moreover, administration of L-deprenyl that prevents break-
down of dopamine, inhibited mammary tumor growth sug-
gesting that tumor development might be associated with 
decreased dopamine signaling [40]. In fact, our own data 
indicated a decrease in dopamine levels in specific brain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Hierarchical cluster analysis of the RA and cancer models. Hierarchical cluster analysis of hypothalamic samples obtained from 

the arthritis and cancer models based on the 10 top-ranked genes from each pair-wise comparison. For more details see Fig. (3). 
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areas in the presence of a tumor at a distant site (Casala et al. 
to be submitted) suggesting a potential link between the 
presence of a distal tumor and changes in neurotransmitter 
levels. 

 Peripheral production of inflammatory cytokines repriori-
tize the behavior of the animal, a process commonly known 
as sickness behavior [41] Several differentially expressed 
genes observed in the microarray study led us to assess 
whether genes involved in the “sickness behavior” process 
changed their expression levels. One feature of the sickness 
behavior response is diminished appetite. It was of interest 
that Oxt was one of the unique genes associated with sick-
ness behavior that showed increased mRNA levels in the 
hypothalamus of mice injected with lung cancer cells. Oxt is 
referred as to a “satiety hormone” and it is known to induce 
reduction in food intake [42]. It was also interesting to find 
decreased Indo levels in all tumors. Lower levels of this 
transcript suggest greater accessibility of tryptophan to pro-
duce serotonin, a neurotransmitter associated with cancer 
related-cachexia, a process characterized by reduced food 
intake [37, 43]. Decreased expression levels of Npy, Mc4r 
and Mc5r might also precede altered feeding behavior and 
response to stress that occurs later in cancer development 
[44]. Thus, the whole data indicate the generation of a mo-
lecular environment prone to the development of a behav-
ioral response to sickness including reduced food intake, 
suggesting that the brain could modulate the expression lev-
els of certain genes long before behavioral changes are mani-
fested or that the tumor mass is noticeable. Recent studies 

indicate that anorectic rats bearing prostate adenocarcinoma 
showed increased IL-1 and IL-1Ra levels in the hypothala-
mus and other discrete brain regions [45]. However, no dif-
ference was observed in the expression levels of NPY or 
POMC mRNA at the later time points when rats became 
anorectic. Thus, it can be suggested that changes in the levels 
of molecules involved in food intake such as NPY occur 
early before anorexia is noticeable, while IL-1 increase asso-
ciated to anorexia/cachexia occurs at a later point [45]. 

 A distinctive gene profile was observed in each tumor 
type that was region-specific and differed from that observed 
in two established RA models. Although we cannot rule out 
that additional organs might exhibit changes in gene expres-
sion own to the presence of distal progressing tumors, the 
liver showed no specific expression indicating that the brain 
might be one of the earliest organs to show specific molecu-
lar changes in the presence of distant tumors. An intriguing 
possibility is that the sets of genes identified in this study 
play not only a role in disease recognition but also as part of 
a bidirectional and functional communication between the 
CNS and a peripheral disease. This might have important 
clinical implications in the future, especially if gene expres-
sion levels in the brain can be detected [46] and eventually 
pharmacologically regulated [47]. 
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Fig. (5). Hierarchical cluster analysis of paired RA and cancer model. Hierarchical cluster analysis of hypothalamic samples from  

arthritis and each of the different cancer models, based on the subset of genes responding differentially between the different paired models. 

RA samples were labelled with green. For more details see Fig. (3). 
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