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Abstract: As the world population continues to increase, demand for the provision of larger amounts of water to carter for 

the increased population increases too. Thus, experts in the water resources arena are struggling to meet this ever-

increasing demand. Moreover, more attention is focusing on groundwater as surface water quality deteriorates. This may 

lead to conflict unless measures that promote deliberate efficient and sustainable exploitation are embraced. In this paper, 

we discuss a novel approach to managing groundwater within a multi-objective framework when the input parameters are 

uncertain. The novelty of the tool is explicitly demonstrated by applying it to an hypothetical example. Results show that 

the tool is versatile and can prescribe solutions which guarantee desired levels of robustness. While Monte Carlo approach 

prescribes the use of only 7 wells, the current approach prescribes the use of more wells (up to 16 wells) for a more robust 

solution. This implies that Monte Carlo approach leads to optimistic solutions which are prone to changes in response to 

perturbations in input parameters. 
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INTRODUCTION 

The increasing world population and the need for potable 
water have seriously stressed the world’s water resources. As 
pollution deteriorates the surface water quality, attention is 
increasingly being focused on groundwater aquifers. How-
ever, over-exploitation of this reserve has adverse impacts, 
e.g., lowered water table and salt-water intrusion. To avoid 
such undesirable consequences, it is imperative to under-
stand the behavior of the aquifer when subjected to external 
stresses. This, coupled with a management scheme will en-
sure efficient utilization of groundwater resources. 

Management of groundwater resources can be done ei-
ther deterministically or stochastically. In a deterministic 
approach, it is assumed that all the input data is known with-
out error while stochastic approach recognises the fact that 
uncertainty in input data is real, hence should be addressed. 
Deterministic methods, therefore, require, full characteriza-
tion of aquifers which is neither practical nor economically 
feasible, hence different approaches are required which are 
capable of utilizing the available scanty data so as to design 
strategies which recognizes the uncertainty brought about by 
inadequacy of data. This recognition has led to stochastic 
methods which treat the inadequate input data as stochastic 
processes, thus one has to solve a stochastic optimization 
problem. Furthermore, when the problem of scanty input 
data is compounded with the desire by a decision maker 
(DM) to consider more than one objective, the available so-
lution methods of stochastic optimization which pre-
supposes that the DM's preferences are conveniently  
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rendered through a single objective are no longer applicable. 
Our contribution in this paper is to:  

• Present a combined simulation and optimization 
methodology which considers the uncertainty brought 
about by the lack of adequate data to fully character-
ize the groundwater aquifer  

• Recognizes that in a real-world situation, it is often 
the case that a DM's preferences are articulated 
through more than one objective (implying a multi-
objective optimization approach). 

Since groundwater management is generally carried out 

in an environment of uncertainties, the question of reliability 

of the model output is of paramount importance. Heterogene-

ity in natural aquifer formations is widely recognized as one 

of the major factors contributing to uncertainty in predicting 

groundwater flow behavior and management strategies. In an 

attempt to incorporate uncertainty in groundwater manage-

ment, a number of methodologies have been developed and 

published in the literature. They include post-optimality 

analysis (e.g., [1, 2]) chance-constrained programming and 

stochastic optimization with recourse method as presented by 

[3-6]. 

In this paper, we transform our stochastic groundwater 

quantity management problem into a second-order cone op-

timization (SOCO) problem, which is then solved by a pow-

erful interior-point method. We first present a general intro-

duction to SOCO problems followed by the formulation of a 

second-order cone groundwater quantity management prob-

lem. Subsequently, we present results for an example which 

is solved using this tool. 

Consider a linear optimization problem (LOP) of the fol-
lowing form:  
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  minimize c
T
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where: 

c, ai R
n
; bi R are the problem parameters while x are 

the optimisation variables. Assuming that all the problem 
parameters except ai are accurately known and that ai are 
uncertain but lying in ellipsoids i defined as: 
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where: 

P = P
T
 are n  n perturbation matrices; 
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nominal values and the norm of ui ensure convexity, then a 

robust solution of the optimization problem given by Eqs. (1) 

to (3) is as follows:  
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An optimization problem defined by Eqs. (5) to (7), 
though now deterministic, has infinitely many constraints 
and a solution to this robust optimization problem is feasible 
if for all i=1,…m,, the following holds:  
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which can equivalently be reformulated by a single con-
straint as: 
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Constraints of the form Eq. (9) are referred to as second-
order cone constraints (otherwise known as Lorentz cone or 
ice-cream cone constraints). Thus the optimization problem 
defined by (1)-(3) can explicitly be written as a SOCO prob-
lem as follows: 

  minimize c
T
x,             (10) 

Subject to: 

  
ai

T

x+ P
i
x b

i
,   i =1,...,m.          (11) 

The norm term is the usual Euclidean norm and can be 
thought of as a penalty term which introduces some robust-
ness within the optimization problem. 

In multi-objective optimization, one is interested in opti-
mizing (minimizing or maximizing) several objectives si-
multaneously. The consideration of several objectives simul-
taneously leads to an optimization approach known as multi-
objective or vector optimization. This approach recognizes 
the fact that not all the objectives can achieve their optimal 

values simultaneously unless the objectives are not compet-
ing (conflicting). This means that there is no unique solution 
to such problems. However one may establish a specific nu-
meric goal (also known as aspiration level) for each of the 
objectives and then seek a solution that minimizes the sum of 
deviations of the objective functions from their respective 
goals. This solution process is known as goal programming. 

Consider now the n-dimensional vector space R
n
. For any 

two points r 
  
= (r

1
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n
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n
),  we can express 

the distance 
  
d(r;r )  as the norm given by 

 
d = r r . Thus 

the distance between the two points can be measured by the 
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Let 
  
Z =  Z

1
,...Z

K{ }
T

 be the aspiration levels (values of 

objectives which the decision maker wishes to achieve on the 

various objectives) and 
  
Z(x) = Z

1
(x),...,Z

k
(x){ }

T

 be the ob-

jectives the decision maker is considering. The distance be-

tween vectors Z and Z(x) can be measured by the Holder’s 

norm as: 
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To avoid biased solution and express decision maker’s 
(DM’s) preferences towards the considered objectives, 
weighting and w can be applied to Eq. (13) which then be-
comes 
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By using the 
  
L

2
 metric, one would then solve an optimi-

zation problem of the following form in order to minimize 

the distance between  Z and Z(x) within the feasible set, . 

  
minimize Z Z(x)

w,2
          (15) 

Where x is the optimization variable and the other parame-
ters are as defined before. By introducing a scalar deviational 
variable , the Eq. (15) translates to the following: 

 minimize               (16) 

Subject to: 

  
Z Z(x)

w,2
,             (17) 

Which a SOCO problem as long is as  is defined by 
linear or second-order cone constraints. Note that inequality 
(17) implies that  0.  

Having presented a general introduction on multi-
objective optimization in the preceding sub-section, we now 
present a formulation of the multi-objectives groundwater 
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management problem, which we seek to solve. In this prob-
lem, one of our objectives is to minimize the operational cost 
while the other objective is to maximize the amount of water 
extracted from the groundwater aquifer. Clearly, the two 
objectives are not only conflicting (increasing the amount of 
water extracted would necessarily result in an increase in 
operational cost) but also non-commensurate (different units 
in the objective attributes) and hence the complexity in-
volved in the solution process. Our multi-objective SOCO 
problem is as follows: 

  
minimize Z

1
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T
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and 

• Nw is the number of pumping wells  

• Nc is the number of control points  

• c1 is the aggregated daily cost of pumping and trans-
portation in monetary units (MUs) per unit volume at 
cell j; 

• xj is the pumping rate in cell j; 

• aIJ is the response at control point i due to pumping in 
cell j; 

• bI is the constraining value at control point i; 

• Wd is total water demand; 

• Uj is the maximum pumping rate allowed in cell j. 

By introducing a deviational variable,  and considering 

the 
 
L

2
 metric (Euclideen distance) as the measure of close-

ness between the aspiration levels 
 
Z

1
and 

  
Z

2
and the feasible 

objective region, the above multi-objective optimization 

problem (Eq. (18)-(22)) can be reformulated as: 
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Where  is a scalar variable, 
 
Z = (Z

1
,Z

2
)T

are the aspiration 

levels of objectives 
 
Z(x)= (Z

1
(x);Z

2
(x))T

and objectives Z(x) 

are as defined by Eq. (18) and (19) respectively. The other 

parameters and variables are as defined before. To express 

DM preferences, preference values can be included in ine-

quality (24) when such preferences exist. 

SOCO problems can be solved efficiently through the in-
terior-point methods that have been developed ([7-9]). A few 
applications of SOCO problems have been reported in the 
literature. They include antenna array weight design, filter 
design, grasping force optimization, portfolio optimization, 
truss design, and equilibrium of systems with piecewise-
linear springs design. From the literature, the reported appli-
cations are basically in the areas of electrical engineering, 
mechanical engineering, economics, and structural engineer-
ing [5, 8, 10-13]. 

Application of the Methodology to an Example 

We use a hypothetical example to demonstrate the appli-
cability of the methodology outlined above. Our goal in this 
problem is to supply domestic water to a distribution centre 
situated in the middle of a single confined square aquifer of 
thickness 35m. The aquifer is an island of dimensions 30km 
and with parameters as shown in Figs. 1 and 2. 

Objective: 

The objective is to supply the required amount of water 
at the lowest possible cost while at the same time satisfying 
the hard (deterministic) constraints and ensuring robustness 
of the optimal solution. 

Constraints: DM expresses constraints as follows: 

• In the specified ecological protect zone, the minimum 
water level equals 5m above sea level. 

• The hydraulic head in all the nodes except those in 
contact with the sea are bounded by the bottom of the 
aquifer 

• To avoid saltwater intrusion, head in cells next to the 
sea are not allowed to fall below 0.2m above sea 
level. 

• There is minimum water demand of 3m
3
/s at the dis-

tribution centre which should be satisfied. 

• Pumping rates from potential wells shown in Fig. 3 
are limited to a maximum yield of 1.5m

3
/s 

• Unit costs of exploitation measured in monetary units 
(MUs) defined at each potential well are calculated as 
a combination of the water pumping costs and water 
transport costs which depend on the distance from the 
well to the distribution centre. The costs are assumed 
to be higher towards the boundaries. The aggregated 
unit cost coefficients at each cell take on values from 
0.1MU at the centre and increase at a rate of 0.1MU 
for every 200m distance. Note that MU can be in any 
currency units. 

The problem is to find the location of wells and the cor-
responding pumping rates, satisfying all or nearly all the 
constraints on the hydraulic heads and pumping rates and the 
minimum demand at the distribution centre. Moreover, the 
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solution should be robust in an environment of uncertain 
spatial hydraulic conductivity values. 

DISCUSSION OF RESULTS 

For the analysis of the example we have outlined, 20 re-
alizations of the uncertain hydraulic conductivity, k; were 
generated using the zonal k values shown in Fig. 1, a stan-
dard deviation (log) of 0.5 and a correlation length of 30 
000m in x-direction and 7 500m in y-direction. These corre-
lation lengths were chosen so as to replicate the hydraulic 
conductivity field of the example as used by [2] with a view 

to comparing the results. All the SOCO problems were 
solved using Sturm’s SeDuMi package [9]. 

The multi-objective SOCO problem solved (Eqs. 23 to 

27) resulted in 50 decision variables (49 of them dealing 

with the location of pumping wells and their strengths and 1 

variable measuring the deviation of the optimal solution 

from the aspiration levels), 101 linear deterministic con-

straints, 1 deterministic second-order cone constraint to 

minimise the deviation from the aspiration levels and 225 

second-order cone constraints to capture the robustness (co-

efficients of these constraints are uncertain, hence stochas-

tic). The targets (aspiration levels) for the two objective 

functions were computed as 
 
Z

1
= 2.07MU  and 

 
Z

2
= 4.47m

3
/ s . 

We then solved the multi-objective optimisation problem 

defined by Eqs. 23 to 27 for various levels of robustness. As 

in the case of the single objective SOCO problem already 

discussed, a scaling factor  can be introduced in inequality 

(25) by replacing the perturbation matrices 
 
P

i
 by 

 
P

i
 where 

 
0 . If 

 
= 0 , it means that there is no uncertainty (the 

input parameters are exactly known), 
 
=1  means that the 

uncertainty is given by the matrices 
 
P

i

T
P

i
 and 

 
>1  it means 

that the uncertainty is higher than that given by the covari-

ance matrices 
 
P

i

T
P

i
. 

Table 1 shows the levels of robustness and the corre-
sponding number of active wells and values of the opera-
tional cost (these results are for a guaranteed volume of wa-
ter amounting to 3.0m

3
 / s). The results show that as the level 

of robustness  is increased from 0 to 0.3, the number of 
active wells increases and consequently the operational cost. 
This is because increasing the level of robustness implies 
increase in the volume of the ellipsoid and hence one has to 
search for a solution within a zone of increasingly high un-
certainty. The consequence is that each active well will 
pump less and since the guaranteed volume of water must be 
realized, then more pumping wells will have to be mobilized 
resulting to higher operational costs. 

Table 2 and Fig. 4 shows how the deviational variable, 
, varies with the level of robustness (remember that the 

deviational variable is a measure of the discrepancy between 
the aspiration level, in this case the ideal vector, and the op-
timal or compromise solution realized). It is interesting to 
note that as the level of robustness is increased, the devia-

 

Fig. (1). Ecological protection zone and conductivity zones. 

 

Fig. (2). Recharge zones. 
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Fig. (3). Location of potential pumping wells. 
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tional variable increases too. This is because an increase in 
robustness means an increase in the volume of the ellipsoid 
which implies that the solution sought must guard against a 
wider range of uncertainty, hence more conservative. The 
consequence is that such a solution will lie somewhere in the 
interior of the feasible set. Thus, as the level of robustness is 
increased further, the solutions will come from increasingly 
deeper into the feasible set. 

From Table 1, consider the 3 levels of robustness, namely 
0.0, 0.2, and 0.3. These levels of robustness were chosen so 
as to show how the optimal solutions evolve as the levels of 
robustness are increased. From the results, pumping wells p3; 
p4; p5, p6; p14; p20; p27, p35, p47 and p48 are used 100% of the 
cases; p2; p7; and p21; 83%; p42; 67%; p1 and p28; 50%; p46 
and p49; 33%; while p8; p26; p34 and p41 are used 17% of the 
cases. The rest of the pumping wells are not used at all. Fig. 
5 shows how frequently each of the wells is used. This figure 
(compare with Fig. 3 which shows the location of pumping 
wells) shows that pumping wells located to the north and 
east of the model domain are used more often than pumping 
wells located elsewhere as expected (these pumping wells 
are located away from the ecological protection zone). 

Compromise solutions corresponding to various quanti-
ties of water extracted are given in Table 3 (these solutions 
are for 0.2 level of robustness). It is apparent that as the 
quantity of water extracted is increased, the operational cost 
likewise increases. This depicts some trade-off between the 
two conflicting and non-commensurate objectives. The op-
timal schemes corresponding to the optimal solutions Num-
bers 1, 3, and 5, are depicted in Figs. (6-8). Similarly, these 
optimal solutions are chosen so as to show how the pumping 
strategies evolve under different objective trade-offs. 

The results indicate that as the water demand is increased 
from a minimum of 3.0m

3
/s to a maximum of 3.45m

3
/s, the 

operational cost increases from a minimum of 2.191MU to a 
maximum of 2.670MU. The number of active pumping wells 
range from a minimum of 14 wells to a maximum of 20 
wells. Fig. (9) gives an indication of how frequently each 
pumping well is used across the 5 optimal trade-off solutions 
given in Table 3. 

 [13] compared the optimal solutions for the Monte Carlo 
approach (which they referred to as stochastic scenario) and 
the SOCO approach (which they referred to as robust sce-
nario). Their results showed that the robust scenario gives 
rise to a more expensive optimal strategy. This is because the 

 

Fig. (4). Robustness vs. deviational variable. 

Table 1. Robustness vs. Active Wells a Cost 

Level of Robustness Active Wells Cost (MU) 

0.0 11 2.160 

0.1 14 2.176 

0.15 14 2.185 

0.2 16 2.191 

0.25 19 2.193 

0.3 19 2.195 

Table 2. Deviational Variable vs. Robustness 

Level of Robustness Deviational Variable,  

0.0 0.086 

0.1 0.103 

0.15 0.111 

0.2 0.119 

0.25 0.130 

0.3 0.143 

 

 

Fig. (5). Well use frequency. 

Table 3. Volume vs. Cost 

Optimal Solution Number Volume (m
3
/s) Cost (MU) 

1 3.0 2.191 

2 3.15 2.234 

3 3.25 2.348 

4 3.3 2.419 

5 3.45 2.670 
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robust optimal strategy operates more wells (16 wells) com-
pared to the Monte Carlo optimal strategy which operates 7 
wells. This implies that Monte Carlo approach gives rise to 
optimistic solutions compared to SOCO approach. The 

authors further performed a post-optimality sensitivity analy-
sis to evaluate how the two optimal solutions would perform 
in an environment of uncertainty. The results showed that 
SOCO approach gives rise to more stable solutions than the 
Monte Carlo approach (total constraint violations are less 
than those of the Monte Carlo approach solution). For de-
tailed comparison of the performance of the optimal solu-
tions of the two approaches, see [3]. 

CONCLUSIONS 

In this paper, we have shown that when confronted with 
uncertain multi-objective linear optimization problems, such 
problems can be cast as SOCO problems which are effi-
ciently solved by the interior point methods. We have further 
demonstrated, through an example, how one could apply this 
novel tool to efficiently manage water resources in an envi-
ronment of uncertainty. Using this methodology, one can 
easily increase or decrease the robustness of the solutions 
and therefore be able to choose an optimal strategy taking 
into account the values of the objectives considered and the 
level of robustness such a solution is able of guarantee. An 
advantage of this approach is that one does not have to con-
sider a large number of realizations to derive reasonable sta-
tistics of the uncertain parameters (as is the case with the 
Monte Carlo approach). Moreover, by approaching the un-
certainty problem through SOCO, one is assured of robust 
solutions that are unlikely to be adversely affected by mini-
mal  perturbations within the problem parameters. By recog-
nizing that every system is fraught with uncertainty, it is the 
desire of every DM to be presented with such robust solu-
tions. 
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