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Abstract: Genome sequencing has allowed the generation of genomic and high-throughput post-genomic data. The avail-

ability of huge amounts of this data has, in turn, led to the development of protein role inference methods. Some of these 

methods allow the use of heterogeneous data of varying quality which are more or less informative. However, only limited 

research has been devoted to finding relevant data in terms of the inference of protein roles. In this study, we identified 

relevant subsets of data for the prediction of protein roles within the framework of a kernel method (KCCA) used to pre-

dict the role of a bacterial protein. We carried out a sensitivity analysis based on a fractional factorial design in order to 

study the influence of different microarray experiments, as well as of bacterial orders (groups of families) used to con-

struct the phylogenetic profiles, on the prediction of a protein role. The results of this analysis showed to be useful for in-

terpreting biological predictions highlighting specific data that should be investigated. The method is not restricted to 

KCCA, nor to the organism or to the data we used here. 

Keywords: Protein prediction algorithms, data quality, sensitivity analysis.  

1. INTRODUCTION 

 The sequencing of more and more genomes and their 
annotation has produced a huge amount of genomic data. On 
the other hand it has identified several proteins whose roles 
are unknown. Despite the availability of modern statistical 
and computational tools, assigning a role to a protein re-
mains a difficult task. Several methods have been proposed 
in order to infer protein roles [1-3]. These methods consist in 
the determination of relationships between proteins and are 
thus used to reconstruct protein networks. They use genomic 
and post-genomic data to infer relationships between pro-
teins. Most of the published methods have been validated by 
the reconstruction of a known network in a model organism. 
Nevertheless, predictions can be made for all proteins (with 
known and unknown functions) of the organism and, conse-
quently, completely novel roles can be predicted using an 
inference method. 

 In a previous study we applied a kernel-based protein 
role prediction method proposed by [3] to predict the role  
of the peptidase PepF of lacococci, and validated several 
predictions experimentally. We used all, at that moment, 
available genomic and post-genomic data of this organism to 
predict the role of proteins from the lactic acid bacterium 
Lactococcus lactis IL1403 by obtaining distances between 
all proteins [4]. For these predictions we used Kernel  
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Canonical Correlation Analysis (KCCA) [3], a supervised 
inference method that allows the integration of different data 

types. We integrated protein metabolic network data, phylo-
genetic profiles and microarray data to carry out the KCCA. 
Through this analysis we predicted which lactococcal pro-
teins were close to PepF and several predicted partners were 

validated experimentally. By carrying out these two steps 
(Prediction and Validation), we validated its implication in 
protein secretion, pyruvate metabolism and peptidoglycan 
synthesis. Since most of the predictions were confirmed, we 

concluded that KCCA is a valuable tool for the prediction of 
protein roles [4]. 

 As in most studies on protein prediction [1-4] we did not 
look for the relevance of the specific data used for the pre-

dictions. Nevertheless, highlighting relevant subsets of data 
would inform about quality and importance of data subsets 
on the predictions.  

 In order to determine relevant data (or data subsets) four 

steps need to be undertaken and are proposed in the present 
study: 

 Step 1: Apply an experimental design indicating how to 
sample original data in order to change input variables in a 

controlled manner. 

 Step 2: Conduct the protein role prediction (here KCCA) 
with all possible subsets chosen in step 1. The different runs 
will be called simulations in this article. 

 Step 3: Construct a response or output variable that 
summarizes the results of the protein role prediction algo-
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rithm. Here the predictions for PepF protein compared to the 
reference predictions (using all available data) that were 
experimentally validated. 

 Step 4: Construct a model to explain the response vari-
able in function of the experimental matrix X in order to 
measure the importance of each data. The response variable 
is related to the function predictions for PepF (relationship 
with proteins of known functions) and will change when 
different data are used for the predictions. 

 We address the identification of relevant genomic data in 
protein role prediction using an approach based on sensitiv-
ity analysis. It consists in inferring protein role predictions 
by sampling the data space and the changes in role predic-
tions of one protein. The approach we propose here is gen-
eral and applicable for other protein prediction methods and 
for other proteins, as well as for other organisms for which 
genomic data are available. To illustrate the method we 
chose one particular protein which does not make part of a 
known metabolic network but for which predictions were 
validated experimentally in our previous work [4].  

 Sensitivity analysis focuses on how perturbations on the 
inputs X of a model M generate perturbations in the output Y. 
It makes it possible to decompose uncertainty in the output 
between the input variables (factors) when regression and 
correlation measures are computed on the output [5]. The 
sampling method used to generate the different simulations 
is the key to the sensitivity analysis. The best solution would 
be to test all the possible combinations of input variables and 
to analyze the output. Nevertheless, taking into account that 
the number of input variables can be very high, the number 
of possibilities to be tested increases exponentially and this 
type of screening becomes impossible. Sensitivity analysis 
methods based on Monte Carlo Sampling have been used, 
for example, for the investigation of complex models. The 
model in this case is treated as a black box and the distribu-
tion of inputs and outputs is analyzed on a global basis [6]. 
Other sampling methods can be used that lead to a better 
resolution and ensure the determination of factor importance. 
Herein we chose a fractional factorial design [7] to sample 
the factor space. 

 We restricted the present study to two multivariate 
datasets: the microarray experiments and the phylogenetic 
profiles. The protein metabolic network is the dataset used as 

reference for the KCCA. By varying the inputs of the two 
datasets through the sensitivity analysis, we were able to 
determine which data are more useful for the prediction of 
the role of PepF (Fig. 1).  

 The results of the sensitivity analysis and the search for a 
simplified model allowed us: (i) to construct acceptable 
linear models with low residual error; (ii) to identify the 
most relevant data or factors in terms of importance in the 
model and in terms of predictability (i.e., to identify a subset 
of factors that allows us to obtain the same results as the 
reference result that were obtained using all variables), and; 
(iii) to better understand the role prediction we had obtained 
for the target protein, assessing the robustness of our predic-
tions. 

 This article is organized as follows: we explain how we 
applied the four steps needed to determine relevant data 
subsets for the protein prediction algorithm used to deter-
mine partners of the lactococcal protein PepF. Then we ex-
plain a heuristic method we propose to choose the most im-
portant subsets from all possible proposed by the sensitivity 
analysis. Finally, we assess the robustness of our approach 
by investigating the effect of artificial data. 

2. METHODS 

Step1: Experimental Design  

 The reference used for the protein prediction algorithm 
was the protein metabolic network represented as an adja-
cency matrix of the pathways of L.lactis in KEGG 
(http://www.genome.jp/kegg/).  

 The first sampled data were the microarray data repre-
senting the expression of genes in 115 hybridizations belong-
ing to 40 groups of conditions. The groups of conditions 
were constructed based on repetitions of the same hybridiza-
tion and comparisons of the same mutants. The microarray 
experiments come from three different sources: (1) GEO on 
NCBI (http://www.ncbi.nlm.nih.gov/geo/), (2) Eric Guedon 
(INRA, Jouy-en-Josas), and (3) the European project Express 
Fingerprint directed by Pierre Renault (INRA, Jouy-en-
Josas) and available at http://genome.jouy.inra.fr/efp/base/ 
www.  

 The second data came from phylogenetic profiles con-
structed for 276 bacteria belonging to 80 different bacterial 

 

 

 

 

 

 

 

Fig. (1). Simplified representation of the KCCA method used for the prediction of protein roles in this study. 
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orders and the phylogenetic profiles were constructed by 
BLAST done against 276 bacteria using protein sequences of 
L. lactis. If the result of the BLAST search of a L. lactis 
protein against a protein of one of the 276 bacteria indicated 
an E-value below 10-5 the protein was declared present (1). 
In any other case the protein was declared absent.  

 We considered any of the microarray experiment condi-
tions (40) or any of the bacterial orders (80) as variables or 
factors. (Fig. (1). In each simulation of the algorithm a factor 
(p) can take only two values (absence (-1), presence (1)). 
This means that some data are chosen or not for each step 
within the p microarray experiments (or within the organ-
isms). The reference simulation is the result obtained when 
all factors (all microarray experiments and all organisms of 
the phylogenetic profiles) are present. This simulation pre-
dicts some proteins to be close to PepF that were validated 
experimentally and is therefore refered to as the reference 
result.  

 Several possibilities exist in order to choose the factors 

for each algorithm simulation as was already mentioned in 

the introduction. Taking into account that our interest was to 

control as much as possible the chosen factors and to explain 

the importance of each of them on the predictions, we  

decided to use a fractional factorial design [7]. This design 

allows the independent estimation of main and particular  

interaction effects between factors. A least square estimator 

of these coefficients is straightforward and given by 

, once the response variable Y is defined  

properly (step 3). 

 The fractional factorial design is very helpful as it solves 
the NP-hard problem proposing a reduced number of simula-
tions of the algorithm to obtain changes in the results and 
still allowing to obtain importance of each factor on the 
result. Nevertheless, depending on the design matrix X the 
importance of some interaction factors will be confounded 
with others. This is illustrated in Fig. (2) with a resolution-4 
design matrix, X, for which main effects are not confounded 
with two-factor interactions but some two-factor interactions 
are confounded with others. Four binary factors x1,…, x4 and 
eight experiments or simulations are considered. The column 
corresponding to x4 is the product of columns x1, x2 and x3. 
So, two-factor interaction effect of x1 and x4 are confounded 
(or aliased) with the interaction effect of x2 and x3. 

 We used the FACTEX procedure in SAS (http://www. 
sas.com) to construct the design matrix X. This procedure 
builds orthogonal factorial experimental design matrices and 
indicates the groups of aliased two-factor interactions (the 
aliasing structure). 

Step 2: The Inference Algorithm 

 Any inference algorithm that delivers ranked predictions 
(relationships to proteins of known function in order of im-
portance) could be used. Nevertheless, our entire validation 
of the framework and results presented in Section 3 was 
obtained with the data and the algorithm illustrated in Fig. 
(1) and briefly detailed below. 

 This algorithm is based on KCCA [3], an extension of 
Canonical Correlation Analysis (CCA) but based on kernels. 

Considering two sets of variables associated with a collec-
tion of objects (genes, in this case), CCA consists of looking 
for low-dimensional referentials in which object projections 
are similar or correlated. This data analysis method has been 
extended to data objects represented by kernels (one for each 
type of data) or similarity matrices (see [3, 4, 8]). The algo-
rithm outputs distances between the objects (genes). We thus 
assume that, the smaller the distance between two genes, the 
higher the confidence that the two genes could participate in 
a common function. In [4] we show that this turned out to be 
a correct assumption as most of the proteins predicted to be 
close do PepF participated in common functions. This was 
shown by experimental validations we conducted. A set of 
parameters is associated with the kernels and the KCCA 
method. Leave-one-out cross-validation was used to estimate 
those parameters and makes also part of the entire algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Design matrix X for 4 factors. 

Step 3: Construction of a Response Variable Y 

 To evaluate the different results of each simulation a 

response variable Y was calculated on the basis of the rank-

ing of six proteins SipL, SecA, FtsA, MurB, Glk and AldB. 

These proteins were chosen because they represent three of 

the cellular functions in which it was predicted and experi-

mentally validated that PepF was involved: protein secretion 

(SipL and SecA), peptidoglycan synthesis (MurB) and pyru-

vate metabolism (Glk and AldB). We also included one 

predicted but not experimentally validated function: cell 

division (FtsA) [4]. Using the complete set of microarray 

data and phylogenetic profiles (reference KCCA), the rank-

ing of these proteins with respect to PepF were: 1 for SipL, 

24 for SecA, 8 for FtsA, 59 for MurB, 9 for Glk, 62 for AldB 

[4]. On the basis of these reference rankings, we built a re-

sponse variable Y whose value is zero for these reference 

rankings. So, Y=0 is the reference value assumed to indicate 

a correct ranking of the six chosen partners of PepF. If the 

ranking in these 6 proteins changes, the response variable 

will augment. If any other combination of data with less 

factors conducts to same protein ranking the output of this 

result will be Y=0, indicating that the same predictions could 

be obtained with less data. For each simulation, Y was calcu-

x1 x2 x3 x4

1 -1 -1 -1 -1

1 1 -1 -1 1

1 -1 1 -1 1

X= 1 1 1 -1 -1X= 1 1 1 -1 -1

1 -1 -1 1 1

1 1 -1 1 -1

1 -1 1 1 -1

1 1 1 1 1
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lated as a measure of change in the ranking of these six  

proteins as follows: , 

where  plays the role of a smoothing parameter, N=6 is the 

number of proteins of interest, Ai, i=1,…,N is the absolute 

value of the differences in ranking between reference and 

simulations for the N genes, Si, i=1,…,N are the tolerance 

thresholds with respect to ranking and wi, i=1,…,N are 

weights chosen a priori on the basis of the confidence of the 

predictions for each predicted partner. The value Y can take 

only positive values. The complementary error function erfc 

is used to smooth the response function around the tolerance 

value Si. 

 At this point it is worth mentioning that more than one 
protein role predictions could be addressed in parallel, using 
the same design matrix but increasing the dimension of Y. 

Step 4: Analysis of the Output Modelling Y in Function 

of X 

 The sensitivity analysis itself is the analysis of the differ-

ent Y values obtained by the simulations done based on ma-

trix X. Due to the orthogonality of X and the resolution-4, a 

handful of models corresponding to combinations of main 

effects and interactions groups can be estimated independ-

ently by computing . In that way, 40 main effects 

and 62 interactions were calculated for the microarray data. 

For the phylogenetic profiles, 80 main effects and 175 inter-

actions were calculated. 

 We also used the results of the simulations to determine 
which of the investigated protein partners changed their 
ranking in each of the simulations. This result provides a 
stronger prediction for the partners that change less, indicat-
ing if several groups of variables predict the same result. 

Step 5: Model Selection and Construction of Relevant 

Subsets 

 We propose a heuristic approach that was straightforward 
in our case. Our aim was the selection of models with good 
predictive properties, especially in the neighbourhood of 
Y=0. Moreover, we also looked for relevant subsets of fac-
tors of minimal size. This means subsets with as less mi-
croarray experiments as possible and phylogenetic profiles 
with as less organisms as possible. With respect to these two 
goals, our strategy consisted first in choosing a parsimonious 
model that fitted well the response variable based on the 
factor weights in the linear model, and then verifying that 
when those factors are used, the obtained value was indeed 
close to Y=0. In practice, we ranked the coefficients  ac-
cording to their weight in the linear model and considered 
models with an increasing number of terms or coefficients. 
We then computed the standardized error and adjusted R

2
. 

Models that provided an acceptable R
2
 (at least 0.7) were 

selected for further investigation. The next stage of our pro-
cedure consisted in trying to reduce the number of factors 
involved in these models through a further evaluation and 
identification of subsets of factors of minimal size. To 
achieve this, we used the interaction structure for selecting 
models with a minimal number of factors. This selection 
turns out to be an NP-hard problem as a great number of 
combinations need to be tested. Therefore, we propose a 

heuristic approach of low complexity described in the  
following section, providing an approximate solution. 

Heuristic Approach to Choose Minimal Subset of  
Important Factors 

 For one model that was previously chosen because of a 
good determination coefficient (R

2
>0.7) we looked for fac-

tors belonging to main and interaction effects. One possibil-
ity would have been to propose all factors contained in the 
model (as main or as interaction effects) as important factors. 
Nevertheless, the number of factors can be very high because 
several interaction effects are confounded with others due to 
the way the sample matrix X was constructed. As our aim 
was to simplify the model and extract minimal data subsets 
(with as less factors as possible) we proceeded as follows:  

(a) Selection of factors present in main and interaction  
effects. 

(b) Association of different tags to the chose factors taking 
into account their importance (i.e. presence in main ef-
fects and more than one interaction factors counts more 
than present only in one interaction factor). 

(c) Representation of the interaction structure in a matrix S 

of size f f where f is the number of factors involved in 

main effects and interactions  .  

Taking into account if: 

- Factor xi is involved in a main effect for the model 

  

- (xi, xj) belongs to two-factor interaction aliased group Gm  

(d) Sweeping of each line of matrix S and 

1. Calculation of NI, the number of interactions covered 
considering x1 and factors already selected. 

2. Calculation of NF, the number of extra factors needed to 
cover the interactions. 

(e) Selection of the line with the highest NI/NF. If two lines 
have the same value, we take the one with the highest 
value for NI 

(f) Tagging of factors again until then untagged factors in-
volved in interactions considered on the selected line. 

(g) Suppression of tags associated with covered interactions 
in matrix S. 

(h) Iteration of this process until all two-factor interactions 
are covered using the originally selected factors. 

 To understand this algorithm, we proposed the following 
example. A selected model M is described by the following 
equation: 

 

 This model has two interaction terms. The equation takes 
the fact into account that two-factor interactions are con-
founded in both terms 23 and 36. We represented M in  
the matrix S where the main factors had negative tags (-1, -2 
and -3) and interaction terms received positive tags. At this 
point we knew that our final model would contain the main 
factors. We then explored the other factors. The aim was to 
have a member of each interaction group. For each line of 
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matrix S, we calculated NI and NF. The highest value of 
NI/NF was 2, and so we selected line 5. We therefore re-
tained factor 5, in addition to 4, 6 and 7 which came from the 
main effects. In this example, there is only one iteration 
because all the interactions are covered considering factors 
x4, x5, x6 and x7 (see Fig. 3 for example illustration). 

 Once the model and the factors were selected, a second 
selection of factors on the basis of the output value YP pre-
dicted by the model was made. This was done by using all 
the selected factors that conduced to a low YP. These subsets 
of factors were then considered as an input to the algorithm 
and the response variable was computed. Either the response 
variable was significantly non zero and the potential minimal 
subset was rejected, or the predictions were close to the 
reference predictions (Y=0) and the minimal relevant subset 
was retained. The procedure does not assure that, when  
repeated with another matrix X, the same subset is found. 
Nevertheless, it is assured that for a given matrix X, the  
factor subset is minimal and gives prediction results as close 
as possible to the reference (Y=0). 

Robustness of the Minimal Subset 

 Once a relevant subset was retained, it is useful to know 
if the addition of factors (microarray experiments or organ-
isms in our case), changes the prediction results. To investi-
gate robustness in this sense, we added 3, 6 and 9 factors at 
random to the minimal subset 15 times and repeated  
this procedure five times, which gave us 225 simulations to 
test.  

Construction and Analysis of Artificial Data 

 In order to assess the repeatability and robustness of the 
proposed method, we decided to include 10, 20 and 50 per-
cent of artificial microarray experiments in our data and to 
apply the whole algorithm. If the algorithm is reliable, none 

of these artificial experiments should be selected to make 
part of the relevant subset. The artificial microarray experi-
ments were constructed taking one of the measured expres-
sion values at random for each gene as explained below. 

 First, we independently permuted the existing matrix of 

115 microarray experiments along the lines (genes). Second, 
we added the 4, 8 or 20 first columns to the already existing 
matrix of microarray experiments and created 4, 8 or 20 new 

hybridization groups. In other words, we added new hybridi-

zation groups composed of one artificial experiment to the 
existing 40 hybridization groups. We then ran the whole 
algorithm to determine the relevant subsets. 

3. RESULTS 

 The framework was applied to identify which subsets of 
data seemed to be relevant for PepF’s role predictions. We 
calculated the response value Y for each simulation (Fig. 4) 
proposed by the factorial experimental design matrix X. Y=0 
is the reference value for the last simulation in which the 
complete dataset was used. One simulation corresponds to 
one line of X. None of the other simulations (leaving out the 
factors indicated by -1 in the matrix X) lead to Y=0. We 
obtained models with a low global residual error (0.0116 for 
the microarray data and 0.0078 for the phylogenetic pro-
files). Interactions seem important, as weights for them are 
different from zero. The residual errors for a model that does 
not consider them were higher (0.1083) but still acceptable 
in comparison with the residual error of a model including 
interactions (0.0938). Several two-factor interactions were of 
the same order as main effects for both the model on mi-
croarray data and the model on phylogenetic profiles. The 
three most important main factors of the linear models con-
structed for both types of data are shown in the left-hand 
column of Tables 1 and 2. 

Search of a Simplified Model with a Heuristic Approach  

 Ranking of model coefficients and selecting factors while 
considering the highest coefficients, even with the complete 
aliasing structure, provided very poor results when used for 
prediction (e.g. output Y-value of 0.7073 with 33 of 44 fac-
tors of the microarray data!). As we were interested in mini-
mizing Y we used the heuristic approach mentioned before to 
find a minimal subset of data. We obtained subsets of factors 
predicted to give the lowest possible output of Y. We tested 
the first 10 subsets retained after the selection procedure for 
seven linear models of 10, 15, 20, 25, 30, 35 and 40 terms or 
coefficients to see if the predicted output of Y was in fact 
low. The 7 10 values of Y are plotted in (Fig. 5, left for 
microarray data and right for phylogenetic profiles). These 
figures show that several subsets obtained from models with 
30 coefficients give a result of Y=0 for the microarray data 
(20 coefficients for the phylogenetic profiles).  

 

 

 

 

 

 

Fig. (3). Construction of matrix S (left) and selection of factors (right). The factors in red are initially selected because they belong to main 

effects (tagged with -), the factors in blue are selected in a second step because they cover interaction effects. 

 1 2 3 4 5 6 7   1 2 3 4 5 6 7 NI/NF 

1    1    1    1    (1,1),1 

2   1     2   1     (1,2), 0.5 

3  1    2  3  1    2  (2,2),1 

4 1   -1 2   4 1   -1 2   (2,2),1 4 1   -1 2   4 1   -1 2   (2,2),1 

5    2   1 5    2   1 (2,1),2 

6      -2  6      -2  (1,1),1 

7     1  -3 7     1  -3 (1,1),1 
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 Keeping only the factors that contributed to an output of 
Y=0 allowed us to reduce the number of factors to 18 for the 
microarrays and 15 for the phylogenetic profiles.The first 
column of Table 4 shows the 18 factors retained for the mi-
croarray experiments. The solution is not unique but several 
factors are present in the majority of the subsets. Three of the 
factors (microarray experiments or orders of organisms) 
present in most of the minimal subsets are listed in Table 1 
for the microarray data and Table 2 for the phylogenetic 
profiles. It shoud be observed that both types of data behave 
differently since more factors are necessary for the microar-
ray data to obtain an output value near to Y = 0 than for the 
phylogenetic profiles. 

Table 2. Phylogenetic Profiles: Factors in Order of Importance 

(Ordered Coefficients of the Linear Model (LM)) and 

three Factors Making Part of the Relevant Subsets (not 

Ordered). E: Enterobacteriales, H: Halobacteriales, L: 

Lactobacillales, S: Sphingomonadales 

Factor (LM) Order Factors Subset Order 

16 E 16 E 

41 H 41 H 

31 L 62 S 

 

 

 

 

 

 

 

 

Fig. (4). Output Y of the simulations for microarray data (left) and phylogenetic profiles (right) indicated by points. Lines between points are 

added for visibility. 

 

Table 1. Microarray Data: Columns on the Left Show Factor Numbers and Experiments Selected by the Linear Model (LM). 

Coloumns on the Right Show Factor Numbers and Experiments after Relevant Subset Identification 

Factor (LM) Experiments Relevant Factors Experiments 

25 Sup pyrF 25 Sup pyrF 

22 Natural strain 3 codY 

36 Pip mutant 7 Pip mutant 

 

 

 

 

 

 

 

 

Fig. (5). Output of Y of the simulations with the subsets obtained using the heuristic approach for microarray data (left) and phylogenetic 

profiles (right) indicated by the points. Lines between points are added for visibility. 

1

0.8

0.6

0.4

0.2

0
0 50 100 150 200 250



Sensitivity Analysis of Protein role Prediction Methods The Open Genomics Journal, 2011, Volume 4    7 

Robustness of the Relationships of PepF 

 For the six predicted partner proteins of PepF we chose 

to work on here (Rank 1 for SipL, rank 24 for SecA, rank 8 
for FtsA, rank 59 for MurB, rank 9 for Glk, rank 62 for AldB 

in the reference prediction), we chose to evaluate their rank-

ing across the different simulations to determine the robust-
ness of the predictions. The number of simulations in which 

the ranking changes are greater than the tolerance thresholds 

Si are shown in the first two columns of Table 3. These re-
sults indicate that some predictions (i.e., SipL) are verified in 

more simulations than others (i.e., FtsA). 

Perturbation of the Relevant Subsets of Factors 

 We added 3, 6 and 9 microarray experiments chosen at 

random from the complete set of experiments to the 15 simu-
lations identified to give Y=0. This was done five times for 

each factor, giving us 75=15 5 new simulations to test. The 

ranking change of the six partners of PepF we investigated 
here, are shown in the last two columns of Table 3. They 

show that the addition of new experiments does not destabi-

lize the results and does therefore not add noise to the predic-
tions. 

Artificial Experiments do not Make Part of the Relevant 

Subsets 

 We determined the relevant subsets using simulated ex-
periments added to the real data. In the case of 10% of simu-
lated data, we found exactly the same relevant subsets as 
when using only the original data (Table 4). This subset 
changed when we used 20% but did not include the simu-
lated subsets. In the case in which 50% was used, we found 
one of the simulated experiments, number 51, between the 
relevant subsets (Table 4). 

4. DISCUSSION 

 The identification of relevant data subsets for protein  
role prediction raises many challenges in terms of (i)  
the complexity of the methods and high dimensions of  
the data used in prediction methods, (ii) the identification  
of relevant subsets, (iii) the robustness and reliability of  
the subset identification, and (iv) the interpretation of the 
relevant data pieces. 

Table 4. Comparison of the Relevant Subsets Determined 

Using the Original Microarray Dataset (Original) 

and with 10 Percent (10simul), 20 Percent (20simul) 

or 50 Percent (50simul) Simulated Microarray  

Experiments 

original 10simul 20simul 50simul 

2 2 2 2 

3 3 3 3 

5 5 5 5 

7 7 7 7 

8 8 9 9 

11 11 11 11 

12 12 12 12 

16 16 13 13 

21 21 16 16 

24 24 21 21 

25 25 25 23 

27 27 27 25 

29 29 29 27 

30 30 30 29 

32 32 32 30 

35 35 35 32 

37 37 37 35 

40 40 38 36 

- - 40 37 

- - - 38 

- - - 51 

 

Simplification is Necessary 

 The analyzed model is very complex because many  
variables and parameters are brought into play and the output 
is a strong simplification of the results. The method we  

Table 3. Number of Original Simulations (Planned by X) in Which the Ranking of the Protein Changed (Sim) and Ranking 

Changes in the Tolerance test (T). MD: Microarray Data, PP: Phylogenetic Profiles. Column Si Indicates Tolerance with 

Respect to Ranking 

 SimMD SimPP Si T225MD T225PP 

 128 Total Simulations 256 Total Simulations    

SipL 47 68 5 0 7 

SecA 63 138 10 4 16 

FtsA 120 240 20 8 20 

MurB 62 184 5 0 11 

AldB 64 190 15 4 12 

Glk 68 97 10 10 29 
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propose addresses this difficulty. First of all, we simplified 
the process by investigating only the response variable Y 
concerning one protein, PepF, and not the whole distance 
matrix obtained by KCCA. This could be done, for example, 
investigating the determinant of this matrix. Nevertheless, 
the overall changes are not as strong as to highlight differ-
ences through the simulations. For this reason we propose 
taking a close look at one protein and their partners we do 
know well.  

 We simplified obtained models in a second step by taking 
the ranking of only some proteins in this output vector into 
account. A further simplification is done by the construction 
of one scalar that represents the ranking of the partners of 
PepF in the output vector with respect to the reference rank-
ing. The decision to do this ranking, i.e., the tolerance to 
declare a ranking change as being important and the weight 
we give to the change, is arbitrary and, if chosen in a differ-
ent manner, can change the obtained model. Moreover, the 
results we obtained are obviously dependent on the target 
protein. This means that the important and minimal subset 
obtained for another protein could be different (other mi-
croarray experiments and other organisms). 

 Taking this simplification into account, it is not surpris-
ing that the models obtained are very complex and contain 
many interactions, and that it is very difficult to assign one 
or two main factors that explain the results and to discard the 
rest. Since microarray experiments are done under different 
conditions that affect only a small group of genes, it is not 
surprising to find a high importance of interactions. 

Identification of Relevant Subsets 

 The algorithm we present for this task is one of many 
possible solutions. It was useful since it allowed us to iden-
tify subsets that gave the same results as if the whole data  
set was used. Nevertheless, in more complex studies,  
this may not be the case and more sophisticated model  
selection methods might be necessary. The subsets of factors 
turned out to be more easily reduced for phylogenetic  
profiles than for the microarray data. This is not surprising 
since microarray experiments are more heterogeneous than 
the co-evolution of proteins among the different orders of 
bacteria. 

Robustness and Reliability of the Method 

 The fact that the chosen partners for PepF did not drasti-
cally change their ranking in most of the simulations rein-
forces the obtained predictions. It is not surprising that the 
protein that changes its ranking most of the time is FtsA, 
implicated in cell division and for which the predicted rela-
tionship was not experimentally confirmed. On the other 
hand, the proteins that only change their ranking in few 
simulations are proteins implicated in secretion, which was 
experimentally suggested to be the main function of PepF 
[4]. It was also interesting to observe that the stability of the 
prediction is not related to ranking in the reference predic-
tion, since SipL, FtsA and Glk, all having ranks in the first 
10 positions, behave differently.  

 Two additional tests indicate that the proposed method is 
robust and of general applicability. First, we confirmed the 

robustness of the model by the fact that adding experiments 
to a group of experiments that gives a low value of Y, near 
the reference, does not affect the prediction. This means that 
a subgroup of experiments is sufficient to obtain the results, 
but that the use of more experiments does not change the 
predictions. Second, we confirmed the general applicability 
of the method since it is still able to reveal relevant subsets 
even when artificial data is added to the real data. This 
means that the subsets found by the proposed method are not 
an artefact but real relevant subsets. 

Interpretation of the Relevant Pieces of Data 

 Regarding main effects without interactions in the case of 
microarray data, we found that factors representing experi-

ments with highest coefficients mainly belong to the Euro-
pean project, Express Fingerprints. The most relevant ex-
periment group turned out to be the comparison of a pyrF 
mutant to a genetically modified organism (GMO) that con-

tains a suppressor of this mutation on a plasmid [9]. For this 
and the other relevant microarray experiments, it is very 
difficult to interpret their meaning in the relation to predic-
tion of PepF function. Since we are analyzing a pleiotropic 

enzyme, it is not surprising to find that many different condi-
tions are needed to explain its relationships with proteins 
belonging to different experiments. Nevertheless, knowing 
which experiments are relevant can help to highlight interest-

ing experiments in other cases. If only one partner, and thus 
one function is investigated, the model becomes simpler and 
smaller subsets of factors are necessary to obtain reference 
predictions. To analyze a group of partners one by one can 

also help to determine which factor is responsible for each 
prediction. We know, for example, that the microarray data 
making up part of factors 25 (sup pyrF) and 22 (natural 
strain) is responsible for the prediction of SipL as a partner 

of PepF. In the case of the phylogenetic profiles, the most 
important orders belong, in fact, to the evolutionary more 
similar orders of the Lactobacillales. This would indicate that 
the use of evolutionary far organisms to construct phyloge-

netic profiles is not very informative. Nevertheless, the first 
order is not the order of L. lactis but of a close order, Entero-
coccales. 

5. CONCLUSIONS 

 In this paper, we present an innovative and general 
method for the identification of minimal data subsets for 
protein role prediction algorithms. The prediction method 
can be complex but the approach is simple since it is based 
on sensitivity analysis. We found it useful to determine a 
minimal subset of data that still allows us to obtain the refer-
ence predictions, both simplifying the model and the inter-
pretation of the results. Furthermore, we demonstrated that 
the obtained subsets are stable and that the method is robust 
even if simulated data is included. In our case, the determi-
nation of subsets took place after the experimental validation 
of predicted results. Nevertheless, this analysis could have 
been useful at the time biological hypotheses were proposed 
to guide the wet lab experimentations. Moreover, this ap-
proach is applicable for any organism for which genomic 
data is available and can be conducted on any protein of 
interest, for which reference predictions exist. 
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