
Send Orders for Reprints to reprints@benthamscience.net 

 The Open Environmental Engineering Journal, 2014, 7, 1-9 1 

 1874-8295/14 2014 Bentham Open 

Open Access 

Evaluation of Geographic Information Systems-Based Spatial Interpola-
tion Methods Using Ohio Indoor Radon Data 

Ashok Kumar, Akhil Kadiyala
*
 and Dipsikha Sarmah

 

Department of Civil Engineering, The University of Toledo, Toledo, OH, USA 43606 

Abstract: This paper evaluates the performance of six different Geographic Information System based interpolation 

methods: inverse distance weighting (IDW), radial basis function (RBF), global polynomial interpolation, local polyno-

mial interpolation, kriging, and cokriging, using the Ohio homes database developed between 1987 and 2011. The best 

performing interpolation method to be used in the prediction of radon gas concentrations in the unmeasured areas of Ohio, 

USA was determined by validating the model predictions with operational performance measures. Additionally, this study 

performed a zip code level-based analysis that provided a complete picture of the radon gas concentration distribution in 

Ohio.  

The RBF method was identified to be the best performing method. While the RBF method performed significantly better 

than the IDW, it was statistically similar to the other interpolation methods. The RBF predicted radon gas concentration 

results indicated a significant increase in the number of zip codes that exceeded the United States Environmental Protec-

tion Agency and the World Health Organization action limits, thereby, indicating the need to mitigate the Ohio radon gas 

concentrations to safe levels in order to reduce the health effects. The approach demonstrated in this paper can be applied 

to other radon-affected areas around the world. 
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1. INTRODUCTION 

Radon (
222

Rn) gas is a naturally occurring radioactive gas 
(properties: colorless, odorless, and chemically inert), 
formed from radium (

226
Ra), by the decay of uranium (

238
U) 

in geological materials. ‘Radon gas drifts upward through 
the ground to the surface of the soil and flows into the out-
door air or seeps into the buildings through the foundation 
cracks and other openings’ [1]. While the geological factors 
primarily control the indoor radon gas levels, the physical 
characteristics of the houses (penetration factor, air exchange 
rate, depressurization effect) were observed to be important 
in the areas where there are no known or significant geologi-
cal sources of radon [2]. Radon gas concentrations in homes 
can easily be monitored using devices such as the charcoal 
canister, the alpha track detector, the positive barrier, the 
electrostatic radon monitor, the scintillation counter, the 
ionization chamber, etc. The radon gas concentrations are 
generally expressed in alpha particles and the units for radon 
gas are “pico-curies per liter of air” (pCi/l). ‘The United 
States Environmental Protection Agency’s (USEPA’s) action 
level for public safety is 4 pCi/l, where in immediate  
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measures must be taken to reduce the level to 2 pCi/l’ [3]. 
However, the World Health Organization designated the 
indoor radon gas concentration action limit to 2.7 pCi/l [4]. 

‘Radon gas exposure is the second major cause of lung 
cancer after cigarette smoking and accounts for 3 to 14% of 
the global lung cancer incidences’ [4]. The cancerous risk 
due to radon gas exposure poses a major challenge to envi-
ronmentalists and healthcare professionals, considering that 
people spend 90% of their time indoors [5] and a majority of 
the radon-induced cancerous incidences are a result of the 
prolonged exposure at lower to moderate radon gas concen-
trations [4]. It is practically not feasible to measure the radon 
gas concentrations in each and every house, and to mitigate 
the radon gas concentrations to safe limits, as it will be a 
time consuming task requiring large financial investments on 
a long-term basis. Under such circumstances, it is essential 
that one explores the available cost-effective alternatives that 
assist in determining the radon gas concentrations in un-
measured areas with a certain degree of confidence. Geo-
graphic Information Systems (GIS) based interpolation 
methods provide one such alternative, wherein a representa-
tive sample of the actual monitored radon gas concentrations 
for a designated area is adequate to generate a spatially in-
terpolated surface of the radon gas concentrations that can be 
utilized in the prediction of radon gas concentrations in the 
unmeasured areas within the designated area.  
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GIS offers researchers a variety of spatial interpolation 
methods: the inverse distance weighting (IDW), the radial 
basis function (RBF), the global polynomial interpolation 
(GPI), the local polynomial interpolation (LPI), the kriging, 
and the cokriging. Several studies demonstrated the applica-
bility of GIS interpolation methods in estimating air quality 
data [6-11]. There are only a limited number of studies that 
investigated the use of GIS interpolation methods in examin-
ing radon gas data [12-16]. All the aforementioned studies 
either used a single interpolation method or a combination of 
two to three interpolation methods in examining their respec-
tive datasets, complimented by validation of the results with 
only limited number of statistical indicators. None of the 
prior studies compared and evaluated the performance of all 
six GIS interpolation methods using the radon gas data with 
a comprehensive set of operational performance measures 
and this research study aims to fill that knowledge gap. The 
homes database from the Ohio Radon Information Systems 
(ORIS) was used in this study to predict the radon gas 
concentrations and the performance of the six GIS 
interpolation methods were validated using operational 
performance measures recommended by Kadiyala and 
Kumar [17]. The identification of the best interpolation 
method using operational performance measures can help in 
not only making accurate predictions of the radon gas 
concentrations in unmeasured areas in Ohio, but also enables 
Ohio public health officials in implementing different 
control strategies to reduce the health impact.  

2. METHODOLOGY 

2.1. Study Area and Database Development 

‘The major sources of radon gas concentrations in the 
state of Ohio, USA are ‘Ohio shale’ and soil. Organic shale 
in Ohio is known to have elevated concentrations (10 ppm to 
40 ppm) of uranium, five to 20 times the average levels in 
the earth’s crust’ [18, 19]. The USEPA estimates that radon 
gas exposure accounts for 900 (14%) cancer deaths per year 
in Ohio. The Air Pollution research group (APRG) of the 
Civil Engineering Department at the University of Toledo 
(UT) has been obtaining the data for radon gas concentration 
in homes in Ohio from various county health departments, 
commercial testing services, and university researchers since 
1987. This enabled the APRG team at UT to compile the 
ORIS that included the homes database accumulated over 20 
years. A detailed timeline of the development of the different 
components (homes, water, testers, and mitigation) of the 
ORIS and the corresponding statistics were discussed else-
where [20].  

Of the 1,862 zip codes in Ohio, radon gas concentrations 
were measured in 1,569 zip codes. Of the 1,569 zip codes, 
861 zip codes had the number of radon gas concentration 
data points less than or equal to 20. This study adopted the 
use of 208,097 radon gas data points measured across the 
remaining 708 zip codes in Ohio, with each zip code having 
more than 20 measured radon gas concentration data points 
to account for the ample representation in each measured zip 
code. None of the prior studies on interpolation schemes 
used such a huge database with ample representation for 

each zip code. As the radon gas data are heavily skewed to-
wards higher concentrations, the geometric mean (GM) of 
radon gas concentration data was used to input as a point 
source datum. Of the 708 zip codes, 22 zip codes were not 
represented in the Ohio zip code shape file obtained from the 
ESRI website [21]. The resulting 686 zip codes were thus 
used as the point source data inputs for the GIS interpolation 
methods. 

‘Uranium data for Ohio were extracted from the map 
published by Duval’ [22]. The distribution map of uranium 
concentrations in Ohio state sediments and soils is available 
online [23]. ‘A map of the Ohio's zip code areas was drawn 
to the same scale and overlaid on the uranium map, which 
resulted in obtaining the corresponding uranium concentra-
tions for respective zip code areas. Each line of the uranium 
data file contained a zip code number, followed by three 
coded numbers that were representative of the modal, the 
maximum, and the minimum uranium concentrations, re-
spectively’ [15]. 

2.2. GIS Based Interpolation Methods 

Of the six GIS based interpolation methods considered in 
this study, the IDW, the RBF, the GPI, and the LPI are  
referred as the deterministic interpolation methods, while the 
kriging and the cokriging are referred as the geostatistical 
interpolation methods. ‘The deterministic interpolation 
methods generate a surface from the measured data points 
based on the degree of similarity or smoothing, while the 
geostatistical methods generate a surface using the statistical 
properties of the measured data points after consideration of 
the spatial configuration of the measured data points around 
the prediction location’ [21]. Based on the data points used 
in generating a surface, one can further classify the determi-
nistic interpolation methods as global and local interpolation 
methods. The global interpolation method uses all the meas-
ured sample data points in making the predictions, while the 
local interpolation method uses only a smaller sample of the 
measured data points from the neighborhood within a larger 
area. The GPI is categorized as the global interpolation 
method, while the IDW, the RBF, and the LPI are catego-
rized as the local interpolation methods. Alternatively, one 
can also categorize the deterministic methods based on 
whether the surface generated passes through the monitored 
data points or not. When the surface passes through the 
measured points, the interpolation methods are referred as 
the exact interpolators and if not, they are referred as the 
inexact interpolators. The IDW and the RBF are the exact 
interpolators, while the GPI and the LPI are the inexact in-
terpolators.  

‘The IDW method works on the principle of influential 
weightage that varies directly with the closeness of the 
measured values to the prediction location, i.e., the points 
closest to the prediction location are provided more weight-
age and the weights reduce as a function of distance from the 
prediction location’ [21]. The RBF method is a special case 
of the splines that aims at fitting a surface through the meas-
ured sample data points with the minimum possible total 
curvature of surface. The GPI method fits a surface between 
the measured sample data points using a polynomial func-
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tion. The LPI method also fits a surface between the meas-
ured sample data points using a polynomial function as is the 
case with the GPI method; the exception being that the LPI 
method fits multiple polynomials within the specified over-
lapping neighborhoods. The kriging method interpolates the 
value of a sample data point at a prediction location from the 
sample data point values at nearby measured locations.  
Kriging makes a prediction for an unknown value of a spe-
cific location using the fitted model obtained from quantifi-
cation of the spatial data structure. The cokriging method 
interpolates the value of a sample data point at a prediction 
location from the observations of multivariable (two or 
more) data point values at nearby measured locations based 
on the auto-correlations and cross-correlations among the 
multivariable data. Additional details on the six interpolation 
methods inclusive of the mathematical expressions were 
documented elsewhere [21, 24]. 

2.3. Approach to Data Analysis  

The Ohio zip code shape file obtained from the ESRI 

website consisted of 1,862 zip codes. The 686 zip codes 

(with radon gas concentration records greater than 20) were 

used as the input data to predict the radon gas concentrations 

in the remaining 1,176 zip codes of Ohio with the ArcGIS 

geostatistical analyst using the interpolation methods of the 

IDW, the RBF, the GPI, the LPI, the kriging, and the cokrig-

ing. The measured 686 zip codes were designated with the 

corresponding radon gas GM concentrations and zero values 

were assigned to the remaining 1,176 zip codes. The polygon 

features of the Ohio zip code shape file were then trans-

formed into point features using the Data Management tool-

box in ArcGIS. The point featured shape file was then di-

vided into two: one shape file with 686 zip codes having 

radon gas GM concentration data and the second shape file 

with 1,176 zip codes having no radon gas GM concentration 

data. The Exploratory Spatial Data Analysis (ESDA) tools in 

the ArcGIS geostatistical analyst were used to assess the 

statistical properties of the radon gas GM data and to visual-

ize the spatial distribution before generating the surfaces 

with the six interpolation methods. The Trend Analysis tool 

revealed the radon gas GM concentrations to be higher near 

Central Ohio and decreased towards the north and south  

directions. 

The point shape file with 686 zip codes was divided to 
obtain 80% of the data that was used as training data for the 
generation of an output surface, and the remaining 20% data 
were used to validate the output surface by comparing the 
actual and predicted radon gas GM concentration values. The 
division of 686 zip codes into training (80%) and validation 
(20%) was based on the observation that the 80-20 combina-
tion provided the least root mean square error on performing 
the sensitivity analysis for the divisions of 90-10, 80-20, 70-
30, and 60-40. Performance measures were then used to 
identify the best interpolation method on validating the ac-
tual and predicted radon gas GM concentration data values 
using the validation dataset and the identified best interpola-
tion method generated surface was used to predict the radon 
gas GM concentrations in the remaining 1,176 Ohio zip 
codes. 

2.4. Model Evaluation  

Based on a comprehensive review of the literature on air 
quality model evaluation, Kadiyala and Kumar [17] enumer-
ated a complete list of performance measures to validate 
indoor and atmospheric air quality models with emphasis on 
the modeling attributes of the extreme-end (i.e., peak-
end/low-end) concentrations and the mid-range concentra-
tions. ‘The statistical performance measures, namely, corre-
lation (CORR), slope of the regression line (m), ratio of the 
intercept of regression line to the average observed concen-
trations (b/C0), normalized mean square error (NMSE), frac-
tional bias (FB), fractional variance (FV), fraction of predic-
tions within a factor of two of the observations (FA2), model 
comparison measure (MCM2), geometric mean bias (MG), 
geometric mean variance (VG), revised index of agreement 
(IOAr), scatter plots, quantile-quantile (Q-Q) plots, and boot-
strap 95% confidence interval estimates over NMSE, FB, 
CORR, VG, and MG were recommended to be used for mid-
range indoor air quality (IAQ) model validation. The study 
also recommended a set of primary performance measures 
(spearman rank correlation coefficient ( ), m, b/C0, FV, FA2, 
robust highest concentration ratio (RHCratio), MCM2, MG, 
VG, scatter plots, Q-Q plots, bootstrap 95% confidence in-
terval estimates over MG and VG) and a set of secondary 
performance measures (IOAr, accuracy of paired peaks (Ap)) 
for IAQ model validation, when the emphasis was on the 
peak-end concentrations. With the exception of RHCratio and 
Ap, all other performance measures recommended for the 
peak-end IAQ model validation were recommended to be 
used for the low-end IAQ model validation’ [17]. Additional 
details on the criteria used for selection and ranking of the 
operational model performance measures, based on the at-
tributes of extreme-end and mid-range IAQ modeling are 
provided elsewhere [17]. This study validated the perform-
ance of the six interpolation methods using the criteria estab-
lished by Kadiyala and Kumar [17, 25-27] and Kadiyala et 
al. [28]. 

Based on the recommendations made by Kadiyala and 
Kumar [17, 25-27] and Kadiyala et al. [28], an IAQ model is 
deemed acceptable from both extreme-end and mid-range 
modeling perspectives, if it meets the criteria of  
(i) 0.9  CORR  1.0, (ii) 0.75  m  1.25, (iii) -25  b/C0 
(%)  25, (iv) 0  NMSE  0.25, (v) -0.25  FB  0.25,  
(vi) -0.5  FV  0.5, (vii) 0.8  FA2  1.2, (viii) 0  MCM2 

 1.2, (ix) 0.8  MG  1.2, (x) 0.8  VG  1.2,  
(xi) 0.8  IOAr  1.0, (xii) 0.9    1.0, (xiii) 0.8  RHCratio 

 1.2, and (xiv) -15  Ap  15. In addition to the above men-
tioned criteria, the degree of closeness of plotted points in 
the scatter and Q-Q graphical representations to the identity 
line can help determine the superiority of one model over the 
other, while the bootstrap estimates over NMSE, FB, CORR, 
VG, and MG provide the 95% confidence interval estimates. 
‘In this study, the performance measures of m, b/C0, FV, , 
RHCratio, MCM2, IOAr, and Ap were computed using Micro-
soft

®
 Excel 2010; while, CORR, NMSE, FB, FA2, MG, VG, 

and bootstrap 95% confidence interval estimates over 
NMSE, r, FB, MG, and VG were computed using the BOOT 
v2.0. Graphical representations of the scatter plots and the 
Q-Q plots were obtained from using the MINITAB

®
 16 and 

MathWorks
®

 MATLAB 2010b software, respectively’ [17].  



4   The Open Environmental Engineering Journal, 2014, Vol. 7 Kumar et al. 

3. RESULTS AND DISCUSSION 

The following sections provide more information on the 
validation results obtained for the six GIS interpolation 
methods in addition to providing a zip code based analysis 
using the identified best interpolation method.  

3.1. Evaluation of the Six Interpolation Methods 

Table 1 presents a summary of the mean (M) statistic, the 
standard deviation (SD) statistic, and the operational per-
formance measures recommended by Kadiyala and Kumar 
[17, 25-27] and Kadiyala et al. [28] for validating the six 
interpolation methods. An ideal interpolation method must 
meet all the stringent criteria recommended by Kadiyala and 
Kumar [17, 25-27] and Kadiyala et al. [28]. However, it is 
rare to find an air quality modeling technique that meets all 
the stringent guidelines. From Table 1, one can note that 
none of the six interpolation methods considered in this 
study met the criteria for CORR, m, b/C0(%), IOAr, , and 
Ap. All the six interpolation methods met the criteria for 
NMSE, FB, FV, FA2, MCM2, RHCratio, and MG. With the 
exception of the GPI method, all the remaining interpolation 
methods met the VG acceptance criteria. The RBF method 
computed operational performance measures of CORR, m, 
b/C0(%), NMSE, FB, FV, FA2, MCM2, VG, , and RHCratio 
were much closer to the corresponding ideal values in com-

parison with the performance measures obtained using the 
other five interpolation methods.  

Table 2 presents a summary of the bootstrap 95% confi-

dence intervals for individual interpolation methods com-

parison over NMSE, FB, CORR, MG, and VG. An interpola-

tion method is considered to exhibit a significant difference 

to zero property when there is no change in the sign between 

lower and upper confidence limits. From Table 2, one can 

note that all the six interpolation methods exhibited the sig-

nificant difference to zero property over NMSE and CORR. 

None of the interpolation methods exhibited the significant 

difference to zero property over FB and MG. With the ex-

ception of the GPI method, all the other interpolation meth-

ods were significantly different to zero when VG statistic 

was considered.  

Table 3 presents a summary of the bootstrap 95% confi-
dence intervals for between interpolation methods compari-
son over NMSE, FB, CORR, MG, and VG. The RBF 
method was significantly different to the IDW method with 
respect to all the considered statistics, i.e., NMSE, FB, 
CORR, MG, and VG. The combinations of IDW – GPI, 
IDW – Kriging, RBF – GPI, RBF – Kriging, RBF – Cokrig-
ing, GPI – LPI, and GPI – Kriging were observed to be  
statistically similar, irrespective of the statistic considered. 
The IDW – LPI methods combination exhibited the signifi-

Table 1. Operational performance measures computed for the six interpolation methods. 

M SD CORR m b/Co(%) NMSE FB FV FA2 MCM2 IOAr  RHCratio Ap MG VG 

Model(s) 

< -------------------------------arithmetic values-------------------------------> Log Values 

Obs. 3.560 1.970 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 

IDW 3.390 1.340 0.635 0.431 52.197 0.200 0.048 0.383 0.942 0.717 0.659 0.746 0.819 -68.523 0.987 1.140 

RBF 3.430 1.370 0.666 0.462 50.331 0.180 0.036 0.362 0.942 0.695 0.558 0.764 0.842 -67.514 0.977 1.130 

GPI 3.330 1.190 0.608 0.368 56.832 0.210 0.066 0.492 0.883 1.082 0.523 0.694 0.735 -62.419 1.068 1.820 

LPI 3.360 1.290 0.648 0.423 52.238 0.190 0.056 0.419 0.942 0.746 0.486 0.721 0.787 -65.625 0.995 1.160 

Kriging 3.410 1.240 0.676 0.426 53.398 0.180 0.041 0.454 0.927 0.723 0.564 0.742 0.789 -63.983 0.971 1.150 

Cokriging 3.420 1.200 0.678 0.412 54.916 0.180 0.039 0.487 0.942 0.732 0.531 0.744 0.782 -64.037 0.965 1.150 

 

Table 2. Bootstrap 95% confidence limit estimates over NMSE, FB, CORR, MG, and VG for individual interpolation methods com-

parison. 

95% Confidence Limits (Lower Limit – Upper Limit) 
Model (s) 

NMSE FB CORR MG VG 

IDW 0.114 – 0.280 -0.020 – 0.120 0.522 – 0.745 -0.067 – 0.053 0.099 – 0.170 

RBF 0.101 – 0.259 -0.031 – 0.105 0.556 – 0.772 -0.077 – 0.041 0.092 – 0.161 

GPI 0.130 – 0.291 -0.006 – 0.146 0.522 – 0.708 -0.074 – 0.215 -0.040 – 1.280 

LPI 0.115 – 0.270 -0.013 – 0.129 0.555 – 0.740 -0.065 – 0.070 0.114 – 0.187 

Kriging 0.101 – 0.251 -0.025 – 0.112 0.583 – 0.771 -0.087 – 0.040 0.100 – 0.170 

Cokriging 0.102 – 0.250 -0.027 – 0.111 0.595 – 0.764 -0.094 – 0.037 0.101 – 0.174 
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cant difference to zero property only for the VG statistic, 
while the combinations of IDW – Cokriging and Kriging – 
Cokriging exhibited the significant difference to zero prop-
erty only for the MG statistic. The RBF – LPI methods com-
bination was statistically similar for the NMSE, CORR, and 
MG statistics, and were significantly different when the sta-
tistics considered were FB and VG. The GPI – Cokriging 
methods combination was statistically similar for the FB, 
VG, and MG statistics; the combination yielded significantly 
different results over NMSE and CORR. The LPI– Kriging 
and LPI – Cokriging methods combination exhibited the 
significant difference to zero property for all the statistics 
with the exception of CORR. 

Figs. (1 and 2) present the scatter plots and the Q-Q plots 
obtained for the six interpolation methods. The higher degree 
of closeness of the plotted points to the 1:1 identity line  
(45° line) indicate the better performing interpolation 
method. Figs. (1 and 2) indicate that RBF performed better 
as the plotted points were much closer to the 1:1 identity line 
in comparison with other interpolation methods.  

Based on the degree of closeness of the computed per-
formance measures to the ideal values (Table 1) and the plot-
ted points to the 1:1 identity line (Figs. 1 and 2), one can 
conclude that the RBF method performed the best in predict-
ing the radon gas GM concentrations. The bootstrap 95% 
confidence interval estimates indicate that the RBF method 
performed significantly differently in comparison with  
 

 

the IDW method and performed similarly with the GPI, the 
kriging, and the cokriging methods. This suggests that the 
RBF method will always perform better than the IDW 
method; the same pattern cannot be expected in comparison 
with the GPI, the kriging, and the cokriging methods on  
using other radon datasets. Therefore, one can always prefer 
to use the RBF method over the IDW method in predicting 
the radon gas concentrations in other states and countries.  
Despite both the RBF and the IDW methods being exact 
interpolators, the superior performance of the RBF method 
over the IDW method may be attributed to the fact that the 
radon surface generated by the RBF method is not limited by 
the range (maximum to minimum) of the measured values 
used in training stage, i.e., the IDW method cannot predict 
values outside the range of values used in the training stage. 
There is a possibility that the GPI, the LPI, the kriging, and 
the cokriging methods outperform the RBF method with 
other radon datasets. Since RBF methods are good at gener-
ating smooth surfaces using large number of data points, 
they are recommended to be used in the places with ample 
representation of radon data points having the feature of 
gradual variations (such as in Ohio) and are inappropriate for 
the places having large variations within short distances. In 
view of the aforementioned model evaluation results and the 
adequate representativeness for radon concentrations in Ohio 
with gradual variations, one may adopt the use of RBF 
method in the prediction of radon gas GM concentrations for 
the unknown zip codes in Ohio.  

Table 3. Bootstrap 95% confidence limit estimates over NMSE, FB, CORR, MG, and VG for between interpolation methods com-

parison. 

95% Confidence Limits (Lower Limit – Upper Limit) 
Model (s) 

NMSE FB CORR VG MG 

IDW – RBF 0.008 – 0.026 0.004 – 0.022 -0.050 – -0.011 0.004 – 0.013 0.003 – 0.019 

IDW – GPI -0.052 – 0.025 -0.054 – 0.021 -0.064 – 0.018 -1.137 – 0.166 -0.212 – 0.043 

IDW – LPI -0.013 – 0.022 -0.025 – 0.008 -0.049 – 0.021 -0.030 – -0.003 -0.029 – 0.011 

IDW – Kriging -0.003 – 0.045 -0.011 – 0.024 -0.095 – 0.008 -0.017 – 0.015 -0.005 – 0.034 

IDW – Cokriging -0.004 – 0.047 -0.012 – 0.028 -0.100 – 0.008 -0.022 – 0.016 0.002 – 0.041 

RBF – GPI -0.067 – 0.007 -0.065 – 0.007 -0.025 – 0.131 -0.157 – 1.146 -0.034 – 0.223 

RBF – LPI -0.004 – 0.028 0.005 – 0.038 -0.049 – 0.017 0.012 – 0.037 -0.002 – 0.043 

RBF – Kriging -0.017 – 0.026 -0.022 – 0.009 -0.057 – 0.030 -0.024 – 0.005 -0.011 – 0.022 

RBF – Cokriging -0.018 – 0.027 -0.024 – 0.013 -0.060 – 0.029 -0.029 – 0.007 -0.008 – 0.030 

GPI – LPI -0.014 – 0.047 -0.022 – 0.039 -0.098 – 0.032 -0.182 – 1.120 -0.056 – 0.204 

GPI – Kriging -0.001 – 0.066 -0.006 – 0.054 -0.130 – 0.010 -0.165 – 1.133 -0.028 – 0.226 

GPI – Cokriging 0.006 – 0.045 -0.003 – 0.054 -0.121 - -0.005 -0.167 – 1.130 -0.021 – 0.231 

LPI – Kriging 0.001 – 0.034 0.002 – 0.028 -0.073 – 0.013 0.005 – 0.026 0.012 – 0.039 

LPI – Cokriging 0.003 – 0.031 0.003 – 0.029 -0.068 – 0.004 0.001 – 0.025 0.016 – 0.045 

Kriging – Cokriging -0.011 – 0.011 -0.006 – 0.009 -0.026 – 0.022 -0.008 – 0.004 0.001 – 0.011 
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Fig. (1). Scatter plots for the six interpolation methods. 

 

Fig. (2). QQ plots for the six interpolation methods. 
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Fig. (3). Ohio radon gas GM concentration prediction map obtained using the RBF interpolation method. 

 

Table 4. Statistics on radon gas GM concentrations in Ohio zip codes. 

Criteria Measured RBF Predictions 

No. of zip codes with radon gas GM concentrations > 2.7 pCi/l 574 1300 

No. of zip codes with radon gas GM concentrations > 4 pCi/l 292 693 

No. of zip codes with radon gas GM concentrations > 8 pCi/l 28 28 

No. of zip codes with radon gas GM concentrations > 20 pCi/l 2 2 

 

Fig. (3) presents the Ohio radon GM concentration pre-

diction map obtained using the RBF method. Table A-1 in 

the supplementary document provides a summary of the  

radon gas GM concentrations predicted for the unmeasured 

1,176 zip codes using the RBF method. 

3.2. Analysis Based on Zip Codes 

This study analyzed the number of Ohio zip codes with 
radon gas GM concentrations greater than 2.7 pCi/l, 4 pCi/l, 
8 pCi/l, and 20 pCi/l using the identified best interpolation 
method, i.e., the RBF method. Table 4 presents a summary 
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of the measured and the RBF (identified best interpolation 
method) predicted zip code results. These results demon-
strate that there is a significant increase in the number of zip 
codes that exceeded the USEPA and WHO action limits of 4 
pCi/l and 2.7 pCi/l, respectively. The zip code based analysis 
revealed 37.2% of the Ohio zip codes to have radon gas GM 
concentrations exceeding 4 pCi/l on using the RBF method 
against 18.6% of the zip codes based on the measured data. 
Similarly, 69.8% of the Ohio zip codes were predicted to 
have the radon gas GM concentrations exceeding the  
2.7 pCi/l on using the RBF method against the 36.6% based 
on the measured data. There was no change in the number of 
zip codes having radon gas GM concentrations exceeding  
8 pCi/l and 20 pCi/l. This indicates that majority of the un-
measured zip codes have the radon gas GM concentrations 
greater than the USEPA and WHO action limits and less 
than 8 pCi/l. This analysis suggests that more mitigation 
work is needed in the state of Ohio to lower the radon gas 
GM concentrations to the recommended action limits.  

CONCLUSION 

The performance of the six GIS based interpolation 
methods, namely, the IDW, the RBF, the GPI, the LPI, the 
kriging, and the cokriging were analyzed using the Ohio 
homes radon gas data. The prediction results were then 
evaluated using a comprehensive set of operational perform-
ance measures. The RBF method was identified to be the 
best performing interpolation method on the basis of the de-
gree of closeness of computed operational performance 
measures to the corresponding ideal values. The bootstrap 
95% confidence interval estimates indicate that the RBF 
method significantly outperformed the IDW method and was 
similar to the other interpolation methods. The identified 
best interpolation method, i.e., the RBF method, was used to 
evaluate the radon gas GM concentrations in Ohio on a zip 
code level basis. These results demonstrated an increase in 
the radon gas GM concentrations, thereby, indicating that 
more works needs to be done by radon planners in Ohio to 
reduce the health effects due to exposure to radon gas con-
centrations. The approach adopted in this study can be im-
plemented world-wide to any radon affected areas. 
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