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Abstract: Precise measurement of dielectric loss angle is very important for electric capacity equipment in recent power 
systems. When signal-to-noise is low and fundamental frequency is fluctuating, aiming at the measuring error of dielectric 
loss angle based on some recent Fourier transform and wavelet transform harmonics analysis method, we propose a novel 
algorithm based on sparse representation, and improved it to be more flexible for signal sampling. Comparison 
experiments describe the advantages of our method. 
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1. INTRODUCTION 

 In distributed monitor of the recent power systems, 
dielectric loss angle (DLA) plays a very important role in 
reflecting the insulating ability of high voltage electrical 
equipment, and on-line methods for measuring the electric 
capacity equipment mainly depend on DLA. Measuring the 
tangent value of DLA, tanδ=IR/IC, with software method is 
suitable with the field data sampled with hardware. Because 
frequency is fluctuating in power system (often in the scope 
of 50±0.2Hz) and the entire cyclical sampling condition is 
difficult to satisfy in digital sampling, “stockade effect” and 
“frequency spectrum divulges” are arouse, which cause large 
errors when measuring the phase between the waves of 
voltage and current during the course of real measurement. 
 The measurement of DLA is a problem with high noise, 
tiny signal and small angle. In order to suppress the high-
ordered harmonic, direct current and noise components, a 
high accuracy method is essential. Three state-of-the-art 
categroies of algorithms in DLA measurements with 
software methods are wave matching, filtering and harmonic 
analysising [1-4]. Computational cost and accrucay are two 
major concerns for the first two methods in realtime 
applications, and the last one, calculates tanδ with harmonic 
analysis [1-3] (e.g., Fourier transform, wavelet transform), is 
much more efficiency and not affected by high-ordered 
harmonic wave and zero-drift. 
 How to measure DLA of electrical equipment accurately 
is an important research topic in electric power system. 
Harmonic analysis is a representative medium measurement 
without direct current (DC) component and harmonic 
interference [1]. But the stockade effect and frequency 
spectrum divulges caused by frequency fluctuation influence 
the phase measurement seriousely with harmonic analysis. In 
order to resolve the measure error in non-synchronous 
sampling, the windowed harmonic analysis is used [3]. But 
when noise exists (especial SNR is lower), the real  
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fundamental wave is covered by noise, windowed Fourier 
transform (FT) harmonic analysis is not suitable, and 
wavelet transform (WT) is one of the effective time-freqency 
analysis method [4], which overcomes the influence casued 
by periodicity factor and some other uncertainly factors. WT 
is a satisfactory tool used for recoverying tiny signals in 
clustered noisy signal, and many WT based harmonic 
analysis methods for the measurement of DLA are proposed 
in the recent years. Based on the theory of the multi-
resolution analysis and the proposed method base on WT, 
the frequency range of the observed signal is near that of the 
fundamental wave, and the major power near 50Hz in the 
signal can be reserved. But as mentioned before, the 
frequency of the fundamental wave is instable in practical 
power system, thus the fundamental wave extracted by WT 
based method is not precise. 
 The objective of our paper is to develop a novel 
measurement method for DLA. The rest of the paper is 
organized as follows. Section 2 introduce the measurement 
procedure for DLA with software method; Section 3 analysis 
the advantages and disadvantages of DLA measurement 
methods based on wavelet transform; Our original and 
improved sparse representation based DLA measurement 
methods are proposed in Section 4; Experimental results are 
reported in section 5, and the conclusion and future work are 
summarized in Section 6. 

2. THE FORMULATION OF DLA MEASUREMENT 

 Generally, besides the fundamental wave (50Hz), the 
observed current and voltage signals in power system 
contain the DC component, the high ordered odd harmonic 
components and noises. In recent researches, the general 
form of mathmatical model for DLA (the waves of current 
and voltage signals) can be formulated as follow [1, 2]: 

A t( ) = A0 + Ak sin kωt +ϕk( )
k=1

2n−1

∑  (1) 

where, ω is the fundamental frequency which can be set 
around 50Hz, Ak and ϕk (k=0,1,3,5,7,…) are the amplitude of 
each component and the initial phase of each harmonic 
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signal, respectively. Once we formulate current and voltage 
waves with Eq.(1), the following work is extracting the 
fundamental components of current and voltage waves, 
which can be denoted as vectors i and u, where,  i,u ∈

1×N . 
Finally, δ can be computed as follow [1]: 

δ = π
2
− arccos

Rm 0( )
Ri 0( )Ru 0( )

 (2) 

where, Ri 0( ) = 1
N

i n( )i n( )
n=0

N−1

∑ , Ru 0( ) = 1
N

u n( )u n( )
n=0

N−1

∑  and 

Rm 0( ) = 1
N

i n( )u n( )
n=0

N−1

∑  are self-correlation functions of i 

and u, and cross-correlation function of i and u, respectively. 

3. WAVELET TRANSFORM BASED DLA 
MEASUREMENT 

 Wavelet transform (WT) is one of a widely used time-
frequency analysis tool [4-7]. It produces a variable time-
frequency window by flex and shift of wavelet function, so it 
has unique advantages in transient and non-stationary signal 
analysis aspect, especially set off transient signal of the 
frequency spectrum to extract the characteristics of 
components. The multi-resolution analysis of WT is used to 
extract the DLA in the online monitor system. According to 
the theorem of Nyquist sampling, when we select the number 
of sampling points as 128 (i.e., the sampling frequency is 
6.4kHz), the cut-off frequency is 3.2kHz. So, we can 
decompose the original signal with 7 layers wavelet 
transform as shown in Table 1. 
 The observed signal can be reconstructed with scaling 
coefficient ‘c7’ and wavelet coefficients ‘d7’~’d1’. In the 
measurement of DLA, we need to reconstruct the 
fundamental wave (50Hz), therefore, the coefficient ‘d7’ 
which corresponding to the detail information of 25~50Hz 
should be remained, and the other ones (‘d1’~’d6’) and ‘c7’ 
should be set to be zeros for wave reconstruction. 
 With the finite layers of wavelet composing, we cannot 
obtain the exact wave frequency but only a domain of 
frequency (see ‘d7’ in Table 1). When the frequency is 
fluctuating in a real power system, the reconstruction result 
of the fundamental wave with wavelet transform is not very 
accuracy; Otherwise, the whole cycle of the waves of voltage 

and current is needed, and the starting and ending points of a 
while cycle in original waves is hard to determined. 

4. SPARSE REPRESENTATION BASED DLA 
MEASUREMENT 

4.1. Original Sparse Representation based DLA 
Measurement 

 Sparse representation (abbreviated as SR, also named as 
sparse sensing or compressive sensing) [8, 9] is an attractive 
signal reconstruction method proposed by Candes et al., 
which has become one of the most important analysis tools 
in signal processing. The main purpose of SR is to 
reconstruct a signal  s ∈m×1  with an over-completed 
dictionary  D∈m×n  with sparse coefficient vector  c∈n×1 . 
The atoms (column vectors) in dictionary D are non-
orthogonal, while the basis with wavelet transform are 
orthogonal. The formulation of SR can be written as the 
following l1-norm constrained optimization problem: 

minc s − Dc F
2 +α c 1  (3) 

where, α describes the sparsity of the sparse coefficients c. 
Once we get an over-completed dictionary with the odd 
ordered harmonic components (1,3,5,7 ordered components 
are used in our simulation experiments, just as that in most 
current paper), sparse representation can be used for 
decomposing the measured current and voltage signals with 
fundamental component and other high ordered odd 
harmonic components, as shown in Fig.(1). 
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Fig. (1). SR based dielectric loss measurement. 

 Obviously, fundamental wave, high ordered harmonic 
waves and direct current component must be included in the 
over-completed dictionary D. Here, we take 3, 5, 7 ordered 
harmonic waves into account (blue part in Fig. 1), and the 
higher ordered ones are very tiny in real power system; In 

Table 1. The decompose procedure of wavelet transform for signal with 6.4kHz sampling frequency. 
 

Scaling Coefficient (Approximate Component) Signal Component/Hz Wavelet Coefficient (Detail Component) Signal Component/Hz 

c1 0~1.6k d1 1.6k-3.2k 

c2 0~800 d2 800-1.6k 

c3 0~400 d3 400-800 

c4 0~200 d4 200-400 

c5 0~100 d5 100-200 

c6 0~50 d6 50-100 

c7 0~25 d7 25-50 
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order to reduce the influence of frequency fluctuate for 
accuracy measurements, we use a number of columns of 
fundamental waves and the fundamental frequency are 49.5, 
49.6, …, 50.5 (red part in Fig. 1) instead of only one column 
of 50Hz fundamental wave and the range from 25 to 50 in 
WT based method; For the sake of denoising, we add a 
column of DC component (green part in Fig. 1) and an 
additional unit matrix (brown part in Fig. 1) in D. m is the 
product of the number of the sampling points in each cycle 
and the number of cycles; n=11 is the number of 
fundamental frequency. 
 With the over-completed dictionary D, we can solve the 
l1-optimization problem with different numerical algorithms, 
such as BP, MP, OMP etc., and the sparse coefficients can 
be obtained. Here, we are only concerned with the 
coefficients cF corresponding to the fundamental wave, while 
ignoring cH, cDC and cT corresponding to high ordered 
harmonic wave, DC component and trivial template, 
respectively. The fundamental component in the measured 
voltage or current signal can be reconstructed with the sparse 
fundamental wave coefficient cF and the fundamental 
component in D (red part in Fig. 1). 

4.2. Selection of Sampling Frequency 

 According to the Nyquist sampling theorem, if sampling 
frequency is greater than or equal to 2 times of the greatest 
frequency in original signal, we can uniquely determine and 
reconstruct the signal with ideal low-pass filters. But in 
practical, in order to ensure the reconstruction accuracy, the 
sampling frequency is often set to be 7-10 times of the 
greatest frequency of original signal. But with the increasing 
of the sampling frequency, the storage space and 
computation time are increasing. 
 Sparse representation challenges the traditional Nyquist 
sampling theorem, which can reconstruct the original signal 
with much lower sampling frequency. Fig. (2) shows the 
values and the relative errors of DLA with the sampling 
times changing from 1~1000 in each cycle (i.e., the sampling 
frequency is changing from 50~50kHz) based on sparse 
representation. 
 In Fig. (2), it is clear to see that, with the increasing of 
the number of the sampling points in each cycle, the absolute 
errors of δ are decreasing, but the reduction becomes very 
slow when the sampling points are larger than 100 (the 
absolute errors of δ is very close to 0). The similar results 
can be obtained when we change the frequency of the 
original signal (49.5~50.5Hz) and the real dielectric loss 
angle δ (0~0.02rad). As described previously, taking 
measurement accuracy, storage space and computation time 
into account, we select 128 as the number of sampling points 
in each cycle (i.e., the sampling frequency is 6.4kHz) in this 
paper. 

4.3. Improved Sparse Representation based DLA 
Measurement 

 When sampling the waves of voltage and current in the 
power system, it is scarcely possible to determine the starting 
points of the whole cycle of wave; moreover, under the 
fluctuating of frequency in power system, even we get the 

starting ones, it is still very hard to determine the ending 
points under the instable sampling frequency. Here, when 
constructing the over-completing dictionary D, we improve 
the original SR based DLA measurement method in 4.1, and 
take S sampling points in each cycle (S is less than the 
number of sampling points in the whole cycle, we set 128 in 
our experiments) with 2 incremental points, i.e., we take the 
points from 1+s to S+s (s are even numbers from 2 to 128-S) 
to construct the first ((S/2+1)*n) columns of D. The 
subsequent columns in D are constructed similarly. When we 
reconstruct the fundamental wave, we only need to select S 
continuous sampling points in observed wave, no matter the 
first point is the starting point of the whole cycle or not. 
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Fig. (2). Absolute errors contrast of changing sampling times in 
each cycle. 

5. EXPERIMENTS 

5.1. Experiment Settings 

 In order to test the performance of our algorithm, DLA is 
computed and compared with FT, WT, original SR and 
improved SR based method, respectively. In our simulation 
experiments, the fundamental wave component of voltage 
and current of sine wave analog measured is considered as 
basis, and it is assumed that 30% of 3th-ordered, 3% of 5-th 
ordered and 5% of 7th-ordered harmonic are included in the 
observed waves; we set the dielectric loss angle of power 
system equipment is range from -0.02rad to +0.02rad, the 
sampling frequency fs=6.4kHz (128 sampling points in a 
whole cycle). Let the expression of voltage to be 

u t( ) = e−3t + sin wt +ϕu1( ) + 0.3sin 3wt +ϕu3( )
+ 0.3sin 5wt +ϕu5( ) + 0.05sin 7wt +ϕu7( ) +κnu t( )

  (2) 

where, nu(t) is the noise components of voltage andκ is the 
noise level; ϕk k = 0,1,3,5,7( )  is the initial phase of each 
component, and the expression of current is similar to Eq.(2). 

5.2. Experiment Results 

 Based on above experimental settings and our original 
and improved SR based method, we can extract the 
fundamental waves from the observed voltage and current 
signals, and compute DLA with Eq.(2). In this section, some 
comparison results are shown with FT [2, 3], WT [4-7], 
original SR (section 4.1) and improved SR (section 4.3) 
based methods. All the experiments are performed on 
computer with 2.67GHz CPU and 3GB memory, and the l1-
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optimization problem in SR based methods are solved with 
mexLasso in SPAMS toolbox [10]. 
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(b) Comparison of relative error with frequency fluctuation 

Fig. (3). The relative errors contrast of changing noise weight and 
fundamental frequency. 

 Fig. (3) is the comparison of DLA relative errors with 
noise level (Fig. 3a) and the fluctuation of fundamental 
frequency (Fig. 3b). As indicated in Fig. (3), the relative 
errors of these four algorithms are increased with the noise 
components increased, but the relative errors of our two 
methods (no more than 10%) are always much lower than 
that of other two methods (larger than 9% and up to nearly 
20%). As shown in Fig. (3b), the frequency fluctuation of 
the real power system impacts all these four algorithms when 
computing DLA. Compared with the wavelet based method, 
our method suppresses the influence caused by frequency 
fluctuation excellently. No matter the frequency of the power 
system is 50Hz or far away from 50Hz (such as 49.5Hz and 
50.5Hz), the relative errors for measurement of dielectric 
loss are under 3%, and under 1% for the most times. 
 Table 2 is the comparison of the computation cost of 
these methods with the sampling frequency 3.2KHz, 6.4KHz 
and 12.8KHz, respectively. It is clear to see that, our original 
SR based method is the most efficient, and the improved one 
is faster than FT based method but slower than WT and 
original SR based method (because of the much larger over-
completing dictionary than original SR based method). 
 
 
 

Table 2. Average computation cost of four DLA 
measurement methods (unit: ms). 

 

                                      Method 

Sampling Frequency 
FT WT Original  

SR 
Improved  

SR 

3.2KHz 42.13 16.85 6.34 29.78 

6.4KHz 60.32 33.79 11.52 47.42 

12.8KHz 105.56 55.56 23.99 89.87 

CONCLUSION 

 In this paper, we introduce a novel sparse representation 
based method for dielectric loss angle measurement, which 
is proposed for the first time, and the improved SR based 
method is proposed to settle the issue that the starting points 
of the whole cycle is hard to obtain in the real power system. 
Compared with Fourier transform and wavelet transform 
based method, our method is much more accurate and very 
stability for the frequency fluctuation. 

CONFLICT OF INTEREST 

 The authors confirm that this article content has no 
conflict of interest. 

ACKNOWLEDGEMENTS 

 This work was supported by the Creative Fund on the 
Integration of Industry, Education and Research of Jiangsu 
Province (BY2013024-18). 

REFERENCES 
[1] B. Djokic, and E. So, “Phase measurement of distorted periodic 

signals based on nonsynchronous digital filtering,” IEEE Trans. 
Instr. Measure., vol. 50, no.4, pp. 864-867, 2001. 

[2] X. Shen, and X. Feng, “The Dielectric Loss Measurement Method 
of Wiener Filtering and STFT Interpolation Harmonic Analysis 
Based on Wavelet Transform,” International Workshop on 
Education Technology & Computer Science, 2009. 

[3] Z. Xu, F. Lv, and L. Zhao, “Analysis of dielectric loss angle 
measurement by Hanning Windowing interpolation algorithm 
based on FFT,” Autom. Electr. Power Syst. vol. 20, no.2, pp.81-85, 
2006. 

[4] J. Wang, Y. Ji, Q. Ran, et al. New wavelet Construction and 
Application in Power System [J]. Proceeding of the EPSA, 1999, 
11(3): 74-79. 

[5] R. Zhao, X. Liu, and C. C. Li, “New Denoising Method Based on 
Wavelet Transform and Sparse Representation,” ICSP2008 
Proceedings, pp. 171-174. 

[6] H. Jing, Studies on Algorithmic Routine Based on Wavelet Analysis 
and Improved Correlation Function and its Application in 
Dissipation Factor, Hunan University, 2006. 

[7] X. Yang, Improved Simulation Arithmetic Analysis on On-line 
Monitering Dielectric Loss of Capacitive Equipment, Chongqing 
University, 2006. 

[8] E.J. Candes, and M.B. Wakin, “An Introduction to Compressive 
Sampling,” IEEE Trans. Signal Process., vol. 25, no.2, pp. 21-30, 
2008. 

 
 
 
 
 
 



570    The Open Electrical & Electronic Engineering Journal, 2015, Volume 9 Ji and Zheng 

[9] E.J. Candes, J. Romberg, and T. Tao, “Robust Uncertainty 
Principles: Exact Signal Reconstruction from Highly Incomplete 
Frequency Information,” IEEE Transactions on Information 
Theory, vol. 52, no.2, pp. 489-509, 2006. 

[10] J. Mairal, F. Bach, and J. Ponce, “Sparse Modeling for Image and 
Vision Processing,” Foundations and Trends in Computer 
Graphics and Vision, vol.8, pp. 85-283, 2014. 

 
 
 

Received: February 17, 2014 Revised: March 21, 2015 Accepted: June 9, 2015 

© Ji and Zheng; Licensee Bentham Open. 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 


