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Abstract: In order to optimize the electric energy quality of HVDC access point, a modular multilevel selective harmonic 
elimination pulse-width modulation (MSHE-PWM) method is proposed. On the basis of keeping the minimum action fre-
quency of the power device, MSHE-PWM method can meet the requirement for accurately eliminating low-order har-
monics in the output PWM waveform. Firstly, establish the basic mathematical model of MMC topology and point out the 
voltage balance control principle of single modules; then, analyze offline gaining principle and realization way of MSHE-
PWM switching angle; finally, verify MSHE-PWM control performance on the basis of MMC reactive power compensa-
tion experimental prototype. The experimental result shows that the proposed MSHE-PWM method can meet such per-
formance indexes as low switching frequency and no lower-order harmonics, and has verified the feasibility and effec-
tiveness thereof for optimizing the electric energy quality of HVDC access point. 
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1. INTRODUCTION 

Along with the gradually deepened research on smart 
power grids in the 21st century, the power electronic technol-
ogy plays an increasingly important role in modern power 
grids [1, 2]. As a new topology developed by Siemens for 
the direct current power transmission system with extra-high 
voltage and large power, modular multilevel converter 
(MMC) has been put into industrial application in HVDC 
systems in various regions including U.S. and Europe. MMC 
topology particularly has such advantages as modular design, 
fault-tolerant operation, single power supply and adaption to 
severe power grids, so MMC has become the popular ten-
dency of the industrial application for extra-high voltage 
HVDC, and such international manufacturers as Siemens, 
ABB and Alston currently sell relevant products. 

As the key link of MMC topology control, multilevel 
PWM technology directly determines the output voltage 
quality, the switching frequency, the harmonic distribution 
characteristics, etc. of HVDC current conversion system. At 
present, the popular PWM control strategies include two 
types: carrier phase-shifting PWM [3] and carrier disposition 
PWM [4]. Essentially, the above two PWM methods both 
belong to carrier modulation and are limited by carrier wave 
ratio required by PWM technology, so the switching fre-
quency of HVDC system is usually above 1kHz and accord-
ingly causes various problems, such as MMC topology de-
vice overheating and electromagnetic interference [5, 6]. 
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In order to optimize the electric energy quality of HVDC 
access point, a modular multilevel selective harmonic elimi-
nation pulse-width modulation (MSHE-PWM) method is 
proposed. On the basis of keeping the minimum action fre-
quency of the power device, MSHE-PWM method can meet 
the requirement for accurately eliminating the low-order 
harmonics in the output PWM waveform. Firstly, establish 
the basic mathematical model of MMC topology and point 
out the voltage balance control principle of single modules; 
then, analyze offline gaining principle and realization way of 
MSHE-PWM switching angle; finally, verify MSHE-PWM 
control performance on the basis of MMC reactive power 
compensation experimental prototype. The experimental 
result shows that the proposed MSHE-PWM method can 
meet such performance indexes as low switching frequency 
and no lower-order harmonics, and has verified the feasibil-
ity and effectiveness thereof for optimizing the electric ener-
gy quality of HVDC access point. 

2. MATHEMATICAL MODEL OF MMC TOPOLOGY  

MMC topology structure is as shown in Fig. (1). The up-
per and lower bridge arms are composed of N single mod-
ules (SM) and one bridge arm reactor Larm which are in serial 
connection, wherein SM is composed of two switching ele-
ments and one energy-storage capacitor, and each SM can 
have three operating states, namely connected state, discon-
nected state and locked state. The output voltage Varm of the 
bridge arm can be freely adjusted in the range of 0~Vd 
through controlling the connection-disconnection of various 
SMs. According to Kirchhoff's law, the mathematical model 
of single-phase MMC topology is established as: 
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Varm = SSMVc + Larm

diarm

dti=1

N

!  (1) 

In the formula: SSM is SM operating state, namely 1 for 
connection, 0 for disconnection and locking for state keeping; 
Vc is SM capacitor voltage. 

Simplify formula (1) for upper and lower bridge arms to 
obtain: 
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After addition and subtraction operations for formulae (2) 
and (3), deduce the output voltage and current as: 
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Define the output current (iout) of bridge arm as the cur-
rent difference of upper and lower bridge arms, and define 
the circular current (icirc) of bridge arm as half of the current 
sum of upper and lower bridge arms, namely:  

  
iout = iupper ! ilower   (6) 

  
icirc =

iupper + ilower

2
  (7) 

3. VOLTAGE BALANCE CONTROL OF SMS 

For MMC topology, maintaining SM voltage balance is 
the precondition of realizing PWM strategy. According to 
Fig. (1), the bridge arm of each phase includes 2N SM units, 
so the expected voltage amplitude of each SM unit shall be: 
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Fig. (1). MMC Topology Structure. 
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VSM =

VDC

N
  (8) 

The charge-discharge process of bridge arm current to 
the capacitor of SM unit is the essential cause of resulting in 
the voltage fluctuation of SM unit, and the mathematical 
description for SM voltage change is as shown in formula (8): 

  
!Vc =

1
CSM

SSMiarm0

T

"   (9) 

In the formula: voltage variation △Vc is jointly deter-
mined by SM state SSM and bridge arm current iarm. 

The voltage balance control principle of SMs is as shown 
in Fig. (2). The voltage balance control algorithms of abc 
three-phase capacitors are independent of each other and the 
specific procedures are as follows: 

(1) When the bridge arm current is positive value (Iarm>0) 
and one SM needs to be connected, the SM with lowest volt-
age is selected at this moment; 

(2) When the bridge arm current is positive value (Iarm>0) 
and one SM needs to be disconnected, the SM with high 
voltage is selected at this moment; 

(3) When the bridge arm current is negative value (Iarm<0) 
and one SM needs to be connected, the SM with highest 
voltage is selected at this moment; 

(4) When the bridge arm current is positive value (Iarm<0) 
and one SM needs to be connected to the bridge arm, the SM 
with lowest voltage class is selected at this moment; 

4. MSHE-PWM PRINCIPLE 

MSHE-PWM is a synchronous PWM optimization tech-
nology for multilevel topology and aims at solving a nonlin-
ear transcendental equation set for eliminating specific har-
monics in order to ensure the quality of the multilevel PWM 
waveform output under low switching frequency. MMC to-
pology MSHE-PWM principle is as shown in Fig. (3). It is 
necessary to inquire angle form according to the expected 
voltage modulation degree m and phase angle θ to obtain the 
level output by MMC phase voltage. In order to ensure the 
direct-current voltage stabilization of MMC topology and 
avoid inter-phase circular current and the significant fluctua-
tion of capacitor voltage of SMs, SM unit numbers Nupper and 
Nlower of upper and lower bridge arms shall be complemen-
tarily output; in other words, the total module number con-
nected for each phase at each moment shall be the same [7-10]. 
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Fig. (2). Voltage Balance Principle of SMs. 
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Fig. (3). MMC Topology MSHE - PWM Principle. 
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Nupper + N lower = N   (10) 

  
Nupper ! N lower = Level   (11) 

Quarter five level MSHE-PWM phase voltage distribu-
tion is as shown in Fig. (4). Therein, α1~αN are the switching 
angles corresponding to N groups of phase voltages. Under 
the condition of taking α1~αN as the system variables, the 
ideal phase voltage equation is as follows: 

  

!1( )i!1
cos " i( ) + !1( )i! 1+k( )

cos " i( )
i=k+1

N

# =
i=1

k

# M

!1( )i!1
cos n" i( ) + !1( )i! 1+k( )

cos n" i( )
i=k+1

N

# =
i=1

k

# 0
  (12) 

In the formula, M is system modulation degree, M∈[0, 2]; 
n=5, 7, …, 3N-2, and N is odd number. 

 A1 is assumed as the amplitude of the fundamental com-
ponent of the modulation voltage and shall meet the follow-
ing constraint conditions: 

   

A1 =
4Vdc

!
! M

0 <"1 <" 2 <!" k+m < !
2

  (13) 

Under the condition of meeting the constraint conditions 
in formula (13), it is necessary to solve the nonlinear tran-
scendental equation set as shown in formula (12) [11]. Ac-
cording to the analysis chart 4, α1~αk are the switching an-
gles corresponding to the voltage jump from state 0 to state 1 
and αk+1~αm are the switching angles corresponding to the 
voltage jump from state 1 to state 2, N=k+m. k and m can be 
odd number or even number, and in order to accelerate the 
offline iteration solution, a hidden system constraint is added 
to reduce the system solution domain, namely k=3, m=3, 
N=6. The five level MSHE-PWM solution trajectory when 
k/m=3/3 is given in Fig. (5). 

5. EXPERIMENTAL VERIFICATION 

In order to verify the feasibility and effectiveness of 
MSHE-PWM control method, one set of 380V/55kW HVDC  
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Fig. (4). Quarter Five Level SHE - PWM Phase Voltage Distribution. 
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Fig. (5). Five level MSHE-PWM Solution Trajectory When k/m=3/3. 
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system experimental prototype as shown in Fig. (6a) is es-
tablished. In consideration of the requirement of MMC to-
pology for multi-path PWM pulse, Sparten 3e FPGA of Xil-
inx Corporation is selected as the core controller, and 
75GB124D of Semikron Corporation is selected as IGBT 
switching device. The MSHE-PWM method principle is as 
shown in Fig. (6b), therein: network voltage = 380V, DC bus 
voltage udc= 600V, filter reactor L=1.2mH, and equivalent 
resistance R=0.8Ω. 

The experimental results of MMC topology controlled by 
MSHE-PWM are as shown in Fig. (7). In Fig. (7a), the line 
voltage Vab at the load side is 17-level step wave, phase-a 

output current ia is sine wave, phase-a bridge arm currents 
iupper and ilower are composed of DC component and second 
harmonics; the capacitor voltage VC1-VC4 of SM unit of upper 
bridge arm are as shown in Fig. (7b), and according to the 
figure, VC1-VC4 all fluctuate around the expected value 150V, 
and within the fluctuation range of 10%(15V), the effective-
ness of the voltage balance control of SMs has been verified; 
the spectral analysis result of the line voltage Vab at the load 
side as shown in Fig. (7c) indicates that MSHE-PWM can 
effectively eliminate all harmonics of 17 (850Hz) line volt-
ages VAB and the corresponding total harmonic distortion 
(THD) is 12.3%, so MSHE-PWM can ensure the quality of 
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the line voltage waveform output by MMC topology under 
low switching frequency [12-16]. 

CONCLUSION 

In order to optimize the electric energy quality of HVDC 
access point, the article proposes a MSHE-PWM method for 
MMC topology. The experimental results have verified the 
feasibility and effectiveness of this method and the following 
conclusions can be obtained: 1) the application of MSHE-
PWM technology in MMC topology control can realize the 

design requirement of no low-order harmonics in PWM 
waveform under low switching frequency and accordingly 
ensure the electric energy quality of access point of HVDC 
system; 2) the voltage balance control of SMs can make SM 
capacitor voltage kept at the same level to ensure the realiza-
bility of MSHE-PWM technology in MMC topology. 
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Fig. (7). Experimental Results of MMC Topology Controlled by MSHE-PWM 
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