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Abstract: This paper points out the deficiency in the current harmonic frequency estimation algorithm in power system. 
In order to improve the accuracy of detection  and reduce the computational complexity, the study  combined the ESPRIT 
algorithm with multistage Wiener filter (MSWF) recurrence to achieve fast estimation of harmonic frequency. Theoretical 
analysis and simulation experiment show that the algorithm had relatively low requirement for the amount of data, and 
demonstrated good frequency resolution characteristics and anti-jamming capability, which made it  ideally suitable for 
harmonic analysis in power system. 
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1. INTRODUCTION 

 For power system of 50Hz power frequency, its 
frequency spectrum can be obtained by Fourier analysis of 
voltage and current. In general, frequency spectrum 
component with frequency of integer multiple of 50Hz 
spectral is called harmonics. It is  known that when the 
harmonics’ components in the power grid exceed the 
limitation standard, security, reliability of the power system 
and electrical equipment operation are seriously affected. 
Therefore, currently, speedy detection method of harmonics 
has become an objective for scholars at home and abroad 
who are committed to study the detection methods and a 
number of achievements have been made, such as fast 
Fourier transform (FFT) [1], singular value decomposition 
(SVD) [2], wavelet transform (Wavelet) [3], artificial neural 
network (ANN) [4], and multiple signal classification 
(MUSIC) algorithm [5]. 
 FFT is the most widely applied in current harmonic 
frequency estimation. Theoretically, when synchronous 
sampling conditions are met, FFT algorithm can obtain 
accurate signal spectrum, and thus calculate the value of 
harmonic frequency, amplitude and phase. However, as the 
actual grid frequency often fluctuates in the frequency 
accessory, which leads to non-synchronous sampling, the 
resulting spectrum leakage may produce false inter-
harmonics, or hide real inter-harmonics, thus limiting FFT 
application [5] for accurate detection of inter-harmonics. 
Although windowed interpolation method can be adapted to 
correct FFT detection result, the correction process has 
relatively strict requirement for the windowing type and the 
window function width, including  relatively large 
computation burden, however, it is difficult to meet the 
requirements [6] of real-time analysis. 
 Wavelet transform [7] has a good localization 
characteristic, but because of the presence of aliasing in the  
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frequency domain of different wavelet functions, inter-
harmonic frequency detection lacks accuracy. Harmonic 
frequency estimation algorithm based on artificial neural 
network requires a lot of prior information and network 
training. In addition, due to  high computational complexity 
and poor timeliness, it is unable to meet the needs of real-
time harmonic detection. 
 MUSIC method is a parameter estimation algorithm 
based on subspace characteristic decomposition, which is 
widely used in array signal processing and DOA estimation. 
The method takes full advantage of orthogonality of signal 
subspace and noise subspace and achieves estimation of 
unknown parameter by spectrum peak search of pseudo-
spatial spectrum, thus demonstrating high estimation 
accuracy and good statistical property [8]. 
 However, this method requires calculation of sample 
covariance matrix and characteristic decomposition. 
Meanwhile, this method also requires point-by-point 
computation of pseudo-spatial spectrum in the full frequency 
domain in comparison to search spectrum peak. If there 
is a high requirement for estimation accuracy , stepping 
distance in the search should not be too large, otherwise, it 
will lead to the picket fence effect. Therefore,  the 
computational complexity of the method is very high. 
 To solve the above problem, this paper proposed a new 
harmonic frequency estimation algorithm in power system. 
Firstly, the algorithm completed decomposition of signal 
subspace and estimation of harmonic number through 
MSWF recurrence, which avoided sample covariance matrix 
characteristic decomposition required by MUSIC algorithm. 
Secondly, it used estimation of signal parameters via 
rotational invariance techniques (ESPRIT) and completed 
estimation of harmonic frequency, which avoided point-by-
point computation of pseudo-spatial spectrum in the full 
frequency domain to search spectrum peak in MUSIC 
algorithm. Therefore, compared with standard MUSIC 
algorithm, computational complexity of harmonic frequency 
estimation algorithm proposed in this paper has been 
significantly reduced. 
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 This paper discussed the  above-mentioned issues. 
Firstly, it describesd the harmonic frequency estimation 
principle based on ESPRIT algorithm; secondly, it 
introduced the technique for subspace rapid decomposition 
via MSWF recurrence; thirdly, it discussed the estimation 
method of harmonic number M; finally, it verified the 
harmonic frequency estimation algorithm proposed in this 
paper via numerical simulation experiment. 

2. SIGNAL MODEL 

 For power system of 50Hz frequency, the frequency 
spectrum can be obtained after Fourier decomposition of 
voltage and current. In general, frequency spectrum 
component with frequency of integer multiple of 50Hz 
spectral is called harmonics. Therefore, sampling signal of 
voltage and current signals with noise, frequency, and 
harmonics in the power system can be expressed as: 

 (1) 

where, x n( )  is the sampling signal, Ai  is the harmonic 
amplitude, fi  is normalized harmonic frequency, n  is the 
sampling time, !i  is the initial phase for harmonics, e n( )  
represents noise, and M is the number of harmonics. To 
facilitate the process, x n( )  was transformed into complex 
frequency signal. Following this,, equation (1) can be 
rewritten as: 
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 After introduction of the above notation, equation (2) can 
be expressed as: X(n) = AS(n)+ E(n)  
 Equation (4) can be expressed as: 

Y(n) = X(n+1)=AS(n +1)+ E(n +1)
         =A!S(n +1)+ E(n +1)  

3. FREQUENCY ESTIMATION PRINCIPLE BASED 
ON ESPRIT ALGORITHM 

 The auto-correlation RX  of X(n)  and the cross-
correlation matrixRXY  of X(n) ,Y(n) : 

RX = E{X(n)X
H (n)} = APAH +! 2I  (5) 

RXY = E{X(n)Y
H (n)} = AP!HAH +" 2Z  (6) 

where, ! 2  is the white noise power,  
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 Structure matrix beam (CXX ,CXY ) , where: CXX=APA
H

,and CXY=AP!
HAH . Following this,, it can be proved that 

e j! i  is generalized eigenvalue of matrix beam (CXX ,CXY ) . 
Therefore, harmonic frequency estimation can be obtained 
by extracting generalized eigenvalue of (CXX ,CXY )  at unit 
circle. Operating principle of ESPRIT algorithm reveals that, 
compared with MUSIC algorithm, estimation of harmonic 
frequency with this algorithm avoided point-by-point 
computation of pseudo-spatial spectrum in the full frequency 
domain to search spectrum peak, thus greatly reducing 
calculation amount. Especially, if the requirement for 
estimation accuracy is high, this gap becomes more apparent. 

4. FAST SUBSPACE DECOMPOSITION BASED ON 
MSWF 

 As mentioned above, application of ESPRIT algorithm in 
harmonic frequency estimation needs characteristic 
decomposition of sample autocorrelation matrix and matrix 
beam. The computational complexity is high and thus it is 
not conducive to real-time processing. Therefore, there is a 
need for  a methodwith  reduced computational complexity 
to obtain signal characteristic subspace and thereby reduce 
time cost of this process. Many scholars have done a lot of 
research in this regard and have made many valuable results, 
such as QR iteration, power iteration algorithm, conjugate 
gradient algorithm, and Lanczos iteration algorithm. These 
methods avoid characteristic decomposition of sample 
covariance matrix, and can reduce computational complexity 
to a certain extent. However, they still need calculation of 
sample covariance matrix and the computational complexity 
is still relatively high. 
 MSWF is a realization form of nested Wiener filter put 
forward by Goldstein in 1997. Without calculation of sample 
covariance matrix and characteristic decomposition, this 
method can obtain signal subspace and noise subspace, with 
characteristics [9] of small computation amount and fast 
convergence. 
 The basic steps of MSWF algorithm based on related 
subtraction structure are as follows [10]: 
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1.  N-point sampling data is used and data array X  is 
constructed in accordance with equation (3) 

 Define training signal d0 (k) = e1
T x1(k +! ) , and 

observation signal X0 = [x2,x3,!,x p ]
T . 

2. M times forward recurrence is: 
FOR  i = 1,2,!,M  

hi =
E[di!1

* (k)Xi!1(k)]
E[di!1

* (k)Xi!1(k)] 2

 

di k( ) = hiHXi!1 k( )  

Xi k( ) = Xi!1 k( )! hidi (k)  

 Consider m dimensional Krylov subspace 

 !
m (Rx , f ) = Span{ f ,Rx f ,!,Rx

m"1 f } composed of Rx !C
N"N  

and any vector f !CN"1 . Considering equation (5), shift in 
invariant property of Krylov subspace derives that: 
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 From equation (7), it can be observed  that if
f !span{Vs} , ! m (Rx , f )  is equivalent to the signal 

subspace. At this time, a group of basis of! m (Rx , f )  is 

requested   , which  can be expanded intoVs . 

 Reference [9, 10] has proven that, when e n( )  is empty 
white noise, d0 (k) = e1

T x0 (k +! ) !span{Vs} Therefore, 
! m (Rx ,d0 (k))  is equivalent to the signal subspaceVs . 

 Meanwhile, according to MSWF theory,  {h1,h2 ,!hM}
obtained by M times, MSWF forward recurrence is a set of 
standard orthogonal basis of ! m (Rx ,d0 (k)) . Therefore, 
MSWF can be used for rapid calculation of signal subspace. 

 It should be stressed that the computational complexity 
of MSWF forward recurrence to calculate signal subspaceVs  
is about O(MP2 ) . However, computational complexity of 
sample covariance matrix calculation and eigenvalue 
decomposition isO(MP2+P3) . Therefore, computation of 
signal subspace Vs with MSWF forward recurrence can 
significantly reduce calculation amount of algorithm. 

5. ESTIMATION OF SIGNAL NUMBER 

 As mentioned above, before application of MSWF to 
obtain signal subspace, dimension M of signal subspace 
needs to be obtained. In theory, when the true covariance 
matrix Rx  is known, M can be obtained through its 
characteristic decomposition. However, in practice, true 
covariance matrix is not available, and  only  its approximate 
estimation Rx

! can be obtained Therefore, it is necessary to 

use other effective methods to estimate the number M of 
harmonics. 
 Currently, the main methods used to estimate the signal 
subspace dimension are AIC criterion and MDL criterion 
based on information theory, gerschgorin disk method, 
smooth rand profile, and canonical correlation method, of 
which, AIC and MDL are the most common methods to 
estimate subspace dimension in white noise environment. 

 In general, basic principles of methods AIC and MDL 
involve  using eigenvalue of Rx

! to determine  cost function
J(k) , based on consistent estimate of M ,  and estimate 
phenomenon based on this method, for obtaining estimate of 
signal subspace dimension M by minimizing J(k).  In 
comparison, AIC criterion is not used when sampling 
number is relatively small, but MDL provides consistent 
estimate of M .  
 Examining standard MDL criterion for subspace 
dimension estimation: 
MDL(k) = L(k) + P(k)

              = ! ln
"i

1
M!k

i=k+1

M

#
1

M ! k
"i

i=k+1

M

$

%

&

'
'
'

(

)

*
*
*

(M !k )N

+
k

2
(2M ! k) lnN

 

(8) 

 Apparently, L(k)  in equation (8) is related to geometric 

mean value of the rear ( M -k ) eigenvalues of Rx
!  and the 

value of arithmetic mean. 

 From equation(5), it can be observed that, based on 
matrix theory, if the real number of signal source is D , then

 Rx
!  should have D  non-zero eigenvalues, denoted by 
descending order, !1 , !2 ... !D .  Among the remaining
M -D  eigenvalues,  !D+1,!D+2,!,!M  is the minimum  and 
equal. (AUTHOR: Please clarify the highlighted) Thus, the 
size relationship of the above M  eigenvalues under high 
SNR condition is: 

 !1 > !2!> !D > !D+1 = !D+2 =!= !M ="
2  (9) 

 Under this condition, by considering the relationship 
between arithmetic mean and the geometric mean, it can be 
observed that: 
L(k) ! 0 , if and only if k = D , L(k)=0 . 

 Meanwhile, P(k) is the quadratic function of k  which 
apparently monotonically increases when k ![0,M " 1] . 
There-fore, equation (8) acquires minimum value when k  = 
D. 
 At low SNR condition, equation (9) becomes false. Use 
of MDL at this time will produce error estimation of signal 
subspace dimension. However, taking into account that in 
actual power system, noise amplitude is about 0-1% of 
fundamental harmonic signal amplitude, and SNR is 
relatively high (30dB), it is relatively appropriate to estimate 
harmonics number in the power system with this criterion. 
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 Obviously, if signal subspace dimension is estimated 
with MDL criterion, calculation of sample covariance matrix

 Rx
!  and characteristic decomposition are needed, which 
eliminate the cause  of using MSWF algorithm to reduce the 
computational complexity. Literature [9] has demonstrated 
that, in the absence of covariance matrix eigenvalues, L(k) in 
MDL criterion converges with probability 1 at 
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where, ! di
2 = E( di

2 ) . Therefore, only by using the 
information obtained via MSWF recurrence, estimation of 
signal subspace dimension M can be obtained, thereby 
avoiding cost brought by characteristic decomposition of Rx

! . 

 In summary, the harmonic frequency estimation 
algorithm in power system proposed in this paper is as 
follows: 
1.  MSWF forward recurrence is applied. With the 

recursive result,  the improved MDL criterion is 
combined with the  estimated signal subspace 
dimension M. 

2. MSWF recurrence to complete the decomposition of
RX  is used Its minimum eigenvalue is taken as the 
estimate of noise power! 2 . 

3. Matrix beam (CXX ,CXY )  is structured and MSWF is 
used to complete its generalized characteristic 
decomposition. 

4. Characteristic root of (CXX ,CXY )  is used on the unit 
circle to complete harmonic frequency estimation. 

6. SIMULATION EXPERIMENT 

Experiment 1 

 The simulation analysis used each measured harmonic 
parameter of line voltage Vbc  of Xi’an 35kV steel busbar, 
with phase position to be self-designed. The simulation 
signals are as follows: 

x t( ) = 37.66 cos 2! " 50t + ! / 4( ) + 0.933cos 2! " 100t + ! / 36( )

+ 1.813cos 2! " 150t + ! / 18( ) + 0.885 cos(2! " 200t + ! / 12)

        + 1.943cos 2! " 250t + ! / 9( ) + 0.97 cos 2! " 300t + ! / 8( )  
 In this experiment, sampling frequency was f

s
= 1000Hz , 

test time was 30ms. The resulting sequence of samples was 
estimated to test the effect of the proposed estimation 
algorithm. The result is shown in Fig. (1). 
 For comparison, under the same condition,  FFT was 
used to conduct spectrum estimation of the resulting 
sequence of samples and the result is shown in Fig. (2). 

 Analyzing the experimental results, even in the absence 
of noise and when the sampling frequency is an integer 
multiple of the fundamental frequency, if the amplitude of 
the harmonic component is low and the amount of sample 
data is small, estimation using FFT may miss some harmonic 
components. Specifically, FFT spectrum of Fig. (2) only has 
three distinct spectral peaks, approximately corresponding to 
three harmonics of 50Hz, 150Hz, and 250Hz. However, for 
comparison, the algorithm accurately estimated six harmonic 
components (corresponding to 6 characteristic roots in circle 
unit in Fig. (1)) in the detection signals. 

 
Fig. (1). Test 1 time series analysis result. 

 
Fig. (2). FFT analysis result. 

Experiment 2 

 To verify the performance of the algorithm in a noisy 
environment, this algorithm was used based on experiment 1. 
Continuously changing SNR from 10 to 80,  the above 
experiment was repeated 100 times at each SNR, and the 
covariance of each harmonic estimate was calculated to 
validate the performance of the algorithm. 
 From the experimental results, it was observed  that when 
SNR is small, the performance of this algorithm will decline 
to a certain degree, but when SNR increases, the estimated 
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covariance value of each harmonic frequency decreases 
rapidly. When SNR is greater than 30, it will be reduced to 
zero, and then stops changing. By considering that noise 
amplitude of actual power system is about 0-1% of 
fundamental signal amplitude, SNR is relatively high 
(30dB). Therefore, this algorithm proved to be suitable for 
application in harmonic frequency estimation in power 
system (Table 1). 

Experiment 3 

 

x t( ) = 0.3cos 2! " 37t + 70!( ) + 0.7cos 2! " 50t + 80!( )
    +1.0cos 2! " 87t + 30!( ) + 0.5cos 2! " 88.66t + 90!( )

               +0.4 cos 2! "150t + 40!( )
 

 The sample sequence contains three inter-harmonic 
frequency components of 37Hz, 88.66 Hz, 87 Hz and signals 
of two integer harmonic frequency components of 50 Hz, 
150 Hz, and no noise. It should be noted that, in this 
experiment, harmonic components 88.66Hz, and 87 Hz with 
two very similar frequencies were set to verify the estimation 
ability of the algorithm for inter-harmonics with adjacent  
frequencies. 
 The condition was the same as  in experiment 1. For the 
resulting sequence of samples,  the proposed algorithm was 
used for harmonic frequency estimation, and the estimation 
result is shown in Fig. (3). 

 
Fig. (3). Experiment 3 time series analysis result. 

 As the two harmonic frequencies of 88.6Hz and 87 Hz 
are very close, the local details in the above figure are 
especially enlarged as in Fig. (4). 
 For comparison,  MUSIC algorithm and FFT algorithm 
were used under the same condition to estimate the resulting 
sequence of samples, and the result is shown in Fig. (5) and 
Table 2. 
 

 
Fig. (4). Partial enlarged drawing of experiment 3. 

 

 

 
Fig. (5). FFT analysis result of experiment 3. 

Table 1. Harmonic frequency test result of experiment 2. 
 

 SNR 

Harmonic 
10 20 30 40 50 60 70 80 

1 0 0 0 0 0 0 0 0 

2 3.9111 0 0 0 0 0 0 0 

3 0.7149 0.0316 0 0 0 0 0 0 

4 10.4201 0 0 0 0 0 0 0 

5 0.0304 0 0 0 0 0 0 0 

6 0.0304 0 0 0 0 0 0 0 
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  It is known, that frequency resolution of FFT algorithm 
mainly depends on sampling frequency and data amount. In 
this experiment, fs / N = 33.3Hz.  Due to relatively few 
sampling points, the resolution was too low to accurately 
detect each harmonic signal in x t( ) . Even if there is a peak in 
the spectrum, the peak number and corresponding frequency 
cannot correspond to the harmonic number and frequency 
included in x t( ) . For comparison, under the same condition, 
the algorithm discussed here can accurately detect and 
estimate the frequency of each harmonic signal, which fully 
demonstrates that the spectral resolving power of this 
algorithm is far superior to FFT. 
Table 2. Experiment 3 harmonic frequency estimation result. 
 

True value (Hz) 37 50 87 88.66 150 

ESPRIT estimation 37.00 50.00 86.99 88.66 150 

Relative error (%) 0 0 0.01 0 0 

MUSIC estimation 37.10 50.00 87.10 88.71 150 

Relative error (%) 0.2 0 0.11 0.05 0 

 
 Using the data in Table 2, the frequency estimation result 
obtained by the algorithm and standard MUSIC algorithm 
was compared, and it was found that, the estimation 
accuracy of the algorithm was  similar to that of standard 
MUSIC algorithm. However, it was noticed  that this 
algorithm avoided characteristic decomposition of sampling 
data matrix and pseudo-spatial spectrum peak search, 
therefore  its computational complexity was much lower than 
that of standard MUSIC algorithm. 

CONCLUSION 

 MUSIC algorithm, one of the most effective methods 
used for frequency estimation, time delay estimation, and 
DOA estimation,  has extremely high accuracy and is ideally 
suited for harmonic analysis in electric power. But as the 
algorithm requires characteristic decomposition of sampling 
signal autocorrelation matrix, and space spectral peak search 
in the full frequency domain, its computational complexity is 
relatively high, which is not conducive to real-time detection 
of harmonics. This paper combined ESPRIT algorithm based 
on MSWF fast subspace decomposition technique, and 

dramatically reduced computational complexity without 
affecting estimation accuracy. The simulation result shows 
that the algorithm can achieve estimation of harmonic with 
ultra-high resolution and has a good anti-noise effect. Such 
algorithm does not need synchronous sampling, and there is 
no spectrum leakage problem. Thus, it is very suitable for 
harmonic analysis in power system, with superiority 
incomparable to Fourier analysis method. 
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