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Abstract: Demultiplexing concept of Duty-Cycle Division Multiplexing (DCDM) technique is tested in the back-to-back 

connection and after transmission over copper wire and optical fiber. Three different lengths of copper wire are tested 

with the total loss of 3.3, 6.6, and 9.9 dB respectively. Even though the sampling points and threshold values were not dy-

namic, the demultiplexing process for the case of back-to-back, and after transmission over the links with 3.3, and 6.6 dB 

losses, was successful without experiencing any errors. This can be witnessed when the recovered data is compared 

against the transmitted bits. However, the errors are recorded in the link with 9.9 dB losses, which was mainly due to the 

non-optimized sampling points and threshold values. In experiment over 60 km Standard Single Mode Fiber, successful 

transmission was demonstrated. The receiver sensitivity is calculated off-line by using bit error rate analysis. These results 

confirm the validity of DCDM demultiplexer structure including the sampling process and the data recovery rules. 

Keywords: Optical communication system, multiplexing and demultiplexing, duty–cycle division multiplexing. 

1. INTRODUCTION  

The demand for high-speed internet increases exponen-
tially by year. Multiplexing allows many users to share a 
transmission medium, thus reducing the total cost and com-
plexity. Time Division Multiplexing (TDM) [1-3], Fre-
quency Division Multiplexing (FDM) or Orthogonal FDM 
(OFDM) [4-6], and Code Division Multiplexing (CDM) [7-
9] are among the popular alternatives. In optical fiber com-
munications, with the introduction of Erbium-Doped Fiber 
Amplifier (EDFA) [10-13], Wavelength Division Multiplex-
ing (WDM) [14-16] technology becomes feasible and 
emerges as the technology of choice in the telecommunica-
tion industry. By using WDM, the utilization of optical fiber 
capacity is increased [17, 18]. Further efforts were taken to 
increase the capacity utilization of optical fiber by the intro-
duction of Polarization Division Multiplexing (PDM) [14, 
15, 17-19], Duobinary (DB) [20-23], Differential Quadrature 
Phase Shift Keying (DQPSK) [17, 24, 25], and Quadrature 
Amplitude Modulation (QAM) [14, 15, 26]. 

Recently, Duty-Cycle Division Multiplexing (DCDM) is 
proposed as an alternative multiplexing and demultiplexing 
technique to increase the channel utilization of WDM system 
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[27-33]. In this multiplexing technique, different return-to-
zero (RZ) duty-cycles is signed for differentiate channels. 
The multiplexed signals in DCDM provide one rising edge 
transition per symbol, which is located at the beginning of 
the symbol. In addition, the spectrum of DCDM signal have 
one impulse per multiplexing user, where one of them with 
the lower frequency is located at the frequency equal to the 
symbol rate [27-29]. Due to these properties, DCDM pro-
vides a simpler clock recovery process and lets the data re-
covery process to be performed at the symbol rate. From 
theoretical and simulation studies, it has been shown that 
DCDM has narrower spectral width, thereby, better tolerance 
to chromatic dispersion in comparison to RZ signal [27, 28]. 
However, to date, there is no experimental work reported 
verifying DCDM concept. Therefore, it is the interest of this 
paper to perform a Proof-of-Concept (PoC) experiment to 
validate the DCDM working principle with the main focus 
on demultiplexing and the data recovery. To the best of our 
knowledge, this is the first time that the concept of DCDM is 
experimentally tested and reported.  

2. EXPERIMENTAL SETUP 

Fig. (1a) shows the experimental setup for 3-channel 
DCDM system. At the transmitter, signals S1, S2, and S3 
representing Channel 1, Channel 2, and Channel 3, respec-
tively, were generated by using Microcontroller-A at 1 kb/s 
per user. As shown in Fig. (1b), for multiplexing three chan-
nels, there are eight (2

3
) possible combination of bits, which 
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seven of them (Case 2 to 8), are considered in this experi-
ment. Case 1, which all users sending bit zero, is not consid-
ered in this prototype due to the hardware limitation. For this 
purpose, S1, S2, and S3 have fixed pre-coded bit-streams of 
1010101, 0110011 and 0001111, respectively.  

One bit stream per channel from Microcontroller-A will 
be sent into the Microcontroller-B, whenever the clock is in 
the high state. Microcontroller-B generates DCDM multi-
plexed patterns/symbols (as shown in Fig. (1c)), based on the 
incoming bits (according to Fig. (1b)). For example, when 
Microcontroller-B received bit 1 from Channel 1, 2, and 3 
(Case 8 in Fig. (1b)), it will generate a step-down shape sig-
nal as shown in Case 8 of Fig. (1c). The multiplexed signal is 
then passed through the Digital-to-Analog Converter (DAC) 
followed by a current-to-voltage converter. After this stage, 
DCDM symbol, which each contains 3 bits per symbol 
(equal to 3 kb/s), are ready for transmission. The base band 
multiplexed signal is first transmitted over back-to-back 
connection and then through a copper wire with 3.3, 6.6 and 
9.9 dB losses. In these setups, the baseband signals are not 
modulated onto any carrier. At the receiver side, Microcon-
troller-C is designed according to the demultiplexing struc-
ture discussed in the reference [30]. In this microcontroller, 
as illustrated in Fig. (2), three different samplers (SP), SP1, 
SP2 and SP3, which operate at the frequency equal to the 
symbol rate (1 kHz), are utilized taking three samples per 
symbol. The three samplers are designed such a way that the 
first sampler, (SP1), samples the first slots by a delay of Ts/8 
s (or 0.125 ms); the second sampler, (SP2), samples the sec-
ond slots with the delay of 3Ts/8 s (0.375 ms); and the third 
sampler, (SP3), samples the third slots with the delay of 
5Ts/8 s (or 0.625 ms), from the beginning of the symbol as 

shown in Fig. (2), where Ts is the symbol duration. Sample is 
not taken from the fourth slots, since it is the guard slot 
without carrying any information. Each sampling point is 
then compared against three threshold (Thr) values, Thr1, 
Thr2, and Thr3, as shown in Fig. (2). The DCDM signals are 
then recovered by employing the recovery rules reported in 
the references [27, 28, 30]. Due to the processing time, the 
recovered signals experienced 1-bit delay (1 ms). The sam-
pling points and the threshold values are embedded into Mi-
crocontroller-C referring to the fixed bit rate (1 kb/s) and the 
fixed output voltage signal from Microcontroller-B.  

In another experiment as shown in Fig. (3), the multi-
plexed signals are externally modulated using an analog In-
tensity Modulator (IM) onto an optical carrier, which is gen-
erated by a Distributed Feedback (DFB) Laser Diode (LD) 
oscillating at 1550 nm. The modulated signal is then boosted 
by employing a short length of Erbium Doped Fiber (EDF). 
The signal is then transmitted over 60 km standard single 
mode fiber (SSMF), (with dispersion coefficient of 17 
ps/(nm.· km) and attenuation of 0.19 dB/km), followed by 
three Dispersion Compensation Fiber (DCF) modules with 
the total attenuation and dispersion of around 8 dB and 1020 
ps/nm, respectively. A variable optical attenuator is also 
added after the DCF modules to control the received power 
for the purpose of sensitivity measurement. Then the signal 
is passed through an optical Tunable Band Pass Filter 
(TBPF) followed by a p-i-n photo diode (PD). In this ex-
periment, there is no preamplifier before the optical BPF, 
due to unavailability of EDF/EDFA. The demodulated sig-
nals after the photodetector are captured from the oscillo-
scope and analyzed in off-line. Due to unavailability of elec-
trical low-pass filter (LPF), the output signal from the pho-

Fig. (1a). Experimental setup for 3-channel DCDM system, (b) eight possible combinations of bits for multiplexing 3 channels, and (c) eight 

possible DCDM multiplexed patterns. 

 

Fig. (2). Schematic of sampling process using three samplers operating at the symbol rate. 
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todetector is directly used for performance analysis. Bit Er-
ror Rate (BER) of the received signal is then estimated using 
the bit error rate analysis presented in the reference [30]. 

3. RESULT AND DISCUSSION 

Three channels each running at 1 kb/s are multiplexed us-

ing DCDM in electrical domain using microcontroller. The 3 

kb/s baseband multiplexed signals are then transmitted over 

multiple lengths of copper wire without modulating over any 

carrier. The received signals are then demultiplexed accord-

ing to the recovery rules that are embedded into the Micro-

controller-C (Fig. 1). DCDM demultiplexer concept and the 

data recovery rules are first tested in the back-to-back con-

nection. As example, Fig.  (4a) (the top signal), shows seven 

patterns of DCDM received signals for the back-to-back 

connection that is captured from the oscilloscope. The eye 

diagram in this case is presented in Fig. (5a), which is gener-

ated in the off-line. The received signal is then demulti-

plexed using the Microcontroller-C with one bit delay and 

extracted from oscilloscope as shown in Fig. (4a), where the 

signal S1, S2, and S3 represent the regenerated signals for 

the Channel 1, 2, and 3, respectively. In this experiment, as 

the eye diagram implies, there is no attenuation and delay to 

affect the transmitted signal. From the received signals, it is 

observed that all the transmitted signals are recovered back 

correctly without any error count from the regenerated sig-

nals. This result confirms the validity of DCDM demulti-

plexer and recovery rules. 

In addition to the back-to-back connection, DCDM sig-
nals are transmitted over several meters of copper wire to 
validate DCDM demultiplexer and recovery rules when the 
impairments such as attenuation and delay are exist in the 
medium. In this case, DCDM baseband signals are transmit-
ted over 100, 200, and 300 m copper wires with total loss of 
around 3.3, 6.6., and 9.9 dB, respectively. As example, seven 
patterns of DCDM received signals for the case of 100, 200, 
and 300 m copper wire are captured from oscilloscope and 
presented in top of the Fig. (4b, c), and (d), respectively. The 
eye diagrams for the case of 100, 200, and 300 m copper 
wire are shown in Figs. (5b, c), and (d), respectively. As the 
eye diagrams and the received signals shown, the effect of 
attenuation and delay become stronger at the higher copper 

 

Fig. (3). Setup with SSMF. 

 

Fig. (4). Examples of received signals and the recovered data captured from oscilloscope for the case of (a) back-to-back connection, (b), (c), 

and (d) over the link with 3.3, 6.6, and 9.9 dB losses, respectively. 
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wire length. The received signals are then demultiplexed and 
recovered back as example of them for the case of 100, 200, 
and 300 m are shown in Figs. (4b, c), and (d), respectively. 
The result from the regenerated signals shows that all the 
transmitted signals for the case of 100 and 200 m are recov-
ered correctly without any errors occurred. However, in the 
case of 300 m, a fixed error, which is one bit error per every 
seven symbols (or every 21 bits), is observed for Channel 1 
(channel with the shortest duty-cycle), as highlighted by a 
circle in Fig. (4d). This error is mainly due to the non-
optimization of the sampling point and the threshold values. 
As mentioned earlier, in this experiment, the sampling points 
and the threshold values are fixed in the Microcontroller–C. 
This is why, the signal related to the Channel 1 experienced 
error (out from the threshold (Thr3) value), which is located 
at the higher amplitude (as highlighted with a circle in Fig. 
(5d). This problem can be improved by optimizing the sam-
pling point and threshold values. Nevertheless, these results 
validate the concept of DCDM. Even though the signal expe-
rienced loss and delay, to certain extent, the original signal 
can still be recovered.  

Another observation from this experiment is the non er-
ror propagation within the symbol. This means that even 
though some part of the received symbols is in error, the data 
for other channels can still be recovered correctly. One prop-
erty of DCDM signals is that any error occurred in the first 
slot (the slot with the shortest pulse width), will not affect on 
the other channels. Also, any error occurred on the second 
slot, will not affect on Channel 3. However, any error oc-
curred in the second and third slot will directly affect on 
Channel 1, and 2, respectively.  

In addition to the copper wire, DCDM multiplexed signal 
is modulated over an optical carrier and transmitted through 
60 km SSMF as the setup shown in Fig. (3). As explained 
earlier, one attenuator is used in the link to change the sys-
tem received power. The received signals are then extracted 
from the oscilloscope and analyzed in off-line for every 
point of the received power. Fig. (6) shows the BER as a 

function of received power for three-channel DCDM system 
(receiver sensitivity) without preamplifier. Performance of 
the system is almost linearly reduced by increasing the at-
tenuation of the system. In general, performance of Channel 
1 (S1), which has the shortest pulse width, is worst that the 
other channels. On the other hand, performance of Channel 3 
(S3), which has the longest duty-cycle, is the best. With ref-
erence to BER 10

-9
, Channel 1, 2, and 3 required received 

power of around –21.8, –22.5, and –24.5 dBm, respectively. 
This result is similar to the simulation results reported the in 
references [28, 30], which the channel with the shortest and 
the longest pulse width performs as the worst and the best 
channels, respectively (the exact value differs due to differ-
ent bitrate). Performance of the system is expected to be im-
proved by employing preamplifier, and electrical LPF to 
eliminate photodetector noise. In addition, the difference 
between performance of different channels can be reduced 
by optimizing the signal level spacing in adjacent levels as 
reported in the reference [34].  

 

Fig. (5). Eye diagram of DCDM signal for the case of (a) back-to-back connection, (b), (c), and (d) over the link with 3.3, 6.6, and 9.9 dB 

losses, respectively. 

 

Fig. (6). Receiver sensitivity of 3-channel DCDM system after 

transmission over 60 km SSMF. 
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4. CONCLUSION 

The proof-of-concept experiment of DCDM has been 
successfully demonstrated, which shows the feasibility of its 
demultiplexing concept and the recovery rules. Even though, 
the system was not in the optimized form, the received signal 
that experienced channel impairments is successfully recov-
ered. One may argue that the bitrate used in this experiment 
does not reflect the system ability to support high capacity 
transmission. However, as the objective is only to prove the 
viability of DCDM concept, it is considered achieved. The 
success of this technique will open a new research paradigm 
in optical communication systems history. Transmission of 
3-channel DCDM over single wavelength proves that using 
this technique, WDM channel utilization can be increased by 
several folds. This technique will become a new alternative 
to fulfill the future telecommunication network requirement 
to support high speed operation. 
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