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Abstract:  Community user access of a WebGIS is characterized by intensity and popularity. The requested geospatial 
data have the characteristics of spatial and temporal locality. This paper proposed an expression for the replacement fea-
ture by balancing spatial and temporal locality as well as long-term and short-term popularity in tile access to ensure that 
the replacement process can not only optimize global access but also adapt to the access pattern changes. Then, using the 
Hash function and linear linked chains to provide cooperative cache management in a heterogeneous cluster-based cach-
ing system speeds up the query and replacement process of tiles and improves the performance of the cluster-based cache 
service. Experimental results revealed that the proposed method obtained a higher cache hit rate and a good average re-
sponse performance for a heterogeneous distributed cluster-based cache system, providing service to more users and thus 
increased its service capacity. 
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1. INTRODUCTION 

As the development of Web Geographic Information 
Systems (WebGIS) has progressed, user activity on such 
systems has increased [1]. High levels of user access to 
WebGIS entail some social community law and access re-
peatability and the accessed hotspot geospatial data exhibits 
spatiotemporal locality [2-5]. A distributed cluster-based 
caching system (DCCS) can cache accessed hotspots in the 
cluster-based cache servers, reducing the database I/O band-
width and the response time for large-scale user access, 
thereby providing a scalable WebGIS service [6]. DCCS is  
one of the most effective service-accelerating methods. 
However, the cache capability in DCCS is limited. When the 
cache is filled by outdated hotspot data, the new popular 
hotspot data cannot be cached. Thus, low storing-value data 
in the cluster-based cache system must be deleted for  free 
storage space for new hotspot caching. This method is called 
cache replacement, and it directly impacts DCCS’s perfor-
mance in terms of cache utilization, cache hit ratio, response 
delay, and so on. Thus, cache replacement is the key method 
to improve the performance of a cluster-based WebGIS ser-
vice.  

Some relevant studies have been conducted on cache re-
placement for Web pages, which can be divided into three 
types: 1) methods based on the locality principle, such as; 
Least Recently Used (LRU) [7], Least Frequently Used 
(LFU) [8], First In, First Out (FIFO) [7], and their variants; 
2) methods based on the size of cached data, such as; Size-
based Replacement [9] and its varieties, Greedy dual-size 
[10], and LRU-MIN [11]; and 3) methods based on specific 
accessed content, such as the Weight method based on 
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translating time cost, data size, and the latest access time 
[12], Hybrid-G [13], Lowest Relative Value (LEV) [14] and 
Size-Adjust LRU [15]. Many existing applications still use 
LRU as their replacement strategy, such as Google [16] and 
NASA [17]. However, geospatial data in WebGIS have spe-
cific spatial and temporal features in access patterns, which 
differ from Web pages, and are stored primarily in tiles 
based on a pyramid model. The tiles in each layer have the 
same size since there are multiple tiles in a browsing window 
while a user roams in WebGIS. Thus, the methods men-
tioned above cannot directly be used in cache replacement 
for geospatial data. 

In the WebGIS research domain, some methods of re-
placement have been proposed, which can be classified into 
two types. One type involves replacing tiles with the lowest 
access probabilities, which are computed through system 
analysis or training [18, 19]. This requires large volumes of 
statistics and probability computations because there are 
large numbers of tiles in the WebGIS. These methods cannot 
adapt quickly to changes in the access patterns. Thus, such 
methods cannot be used efficiently in the WebGIS. The other 
type of method uses statistics of the interval access time for 
tiles for a single client and replaces tiles with higher interval 
values in the client cache [20]. Such methods cannot be used 
to achieve collaboration among heterogeneous cluster-based 
multi-cache servers.  

Some studies have shown that community user access to 
geospatial data has spatial and temporal locality [2-5, 21]. 
Temporal locality of access to tile means that the latest ac-
cessed tile has a higher probability that it will be accessed 
again. The temporal locality is embodied in the access time 
interval or access frequency. Spatial locality of access to tile 
means that the tiles that are spatial neighbors have adjacent 
access time, that is, when a tile is accessed, both the tile and 
its neighboring tiles, which are in the same local area, have a 
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higher probability of being  accessed again in the next mo-
ment. The spatial locality of the accessed tile is embodied in 
the adjacency between the accessed tiles. However, the rela-
tionship between spatial locality and temporal locality of tile 
access is associated. Access to tiles also has the characteris-
tic of long-term and short-term popularity. Thus, this paper 
analyzed and considered the spatial locality and temporal 
locality of tile access and proposed a way to express the ac-
cessed hotspot popularity and its features of spatial-temporal 
locality and access stability by balancing the long-term and 
short-term features, not only to keep the cached objects rela-
tively stable but also to adapt to hotspot changes and to re-
duce the frequency of replacement operations. The paper 
then proposed a cluster-based cache replacement method 
with a collaboration style for heterogeneous DCCS to im-
prove cache hit rate and cluster-based service efficiency. 

2. EXPRESSION OF ACCESS SPATIAL-TEMPORAL 
LOCALITY FOR GEOSPATIAL DATA 

Geospatial data are generally stored as tiles and thus this 
paper used a tile as a cache unit. Zipf's law of tile access 
states  that access to a tile is uneven when users carry out  
roaming in the WebGIS. The access probability of a tile and 
its access rank follows a power-law distribution [2-5]. The 
law further indicates that a tile that has frequently been ac-
cessed in the past has a high probability of being requested 
again in the near future [5]. Thus, the probability of a tile 
being accessed again can be simplified as being in direct 
proportion to its long-term popularity (the total number of 
times a tile is accessed) [20]. Further, if a tile has a higher 
access frequency, its neighboring tiles will likewise have a 
higher probability of being accessed. Thus, the total number 
of times a tile is accessed can reflect spatial distribution of 
the tile’s access with geography features, that is, access to 
spatial locality. Zipf's law reflects the long-term access 
popularity of a tile, which can be used for an effective clus-
ter-based cache replacement mechanism [22].  

LRU reflects the short-term popularity of tile access. It 
considers that the probability of a tile again being accessed is  
inversely proportional to the interval between the tile’s ac-
cess time and current time. Thus, the access probability of 
tiles is ranked according to LRU in the descending order, 
and the rank is  determined by the latest access time of a tile. 
Tiles  accessed more recently are ranked higher and tiles  
accessed earlier are ranked lower. Since the rank depends on 
the latest access time, LRU ignores the long-term access of 
tiles, which could lead to instability in the replacement. As 
we observed from the access logs in the  actual WebGIS, a 
tile’s access interval time is always dynamic. Thus, we used 
access interval time to reflect the temporal locality and short-
term popularity of the tile’s access, and calculated  the access 
interval time to reflect the long-term access popularity and 
spatial locality. Thus, taking into account both spatial and 
temporal locality, and both long-term and short term popu-
larity, we proposed an algorithm, Sum of Tile Access Times 
per Interval (Stat), as shown in (1): 

  

stat(i) = tat i−1( )+ tat i()= tat(k)
k=2

i∑ , i ≥ 2

0, i =1

⎧
⎨
⎪

⎩⎪
      (1) 

with 

 

  
tat k( )= accessTimes k( )−1

accessTime k( )− accessTime(1)
 

Equation (1) shows that tat(k) is the average access time 
in a unit time for k-th access, that is, the k-th access frequen-
cy. The value of tat(k) is related to the total number of times 
the tile is accessed and the current access time, and reflects 
the long-term access characteristic as a Zipf distribution and 
access spatial distribution. It considers two access spatial 
factors: the spatial distance between the current accessed tile 
and the tile in cache, and the difference of spatial distance 
between the current accessed tile and the tile in cache. stat(i) 
is the accumulated value of access times in a unit time under 
the i-th access time. It reflects the temporal locality and con-
siders two temporal factors: the interval time between cur-
rent access time and the previous accessed time of a tile, and 
the difference between the previous intervals.  

  

accessTime k( )− accessTime 1( )
= accessTime j()− accessTime j−1( )( )j=2

k∑
= ΔaccessTime( j)

j=2

k∑

      (2)  

Equation (2) shows that the i-1 previous accesses are all 
involved in the operation for stat(i). Thus, both the total 
number of times a tile is accessed and each access to a tile 
are determined based  on the value of stat. 

To reduce  the complexity of the Stat algorithm and elim-
inate the uneven distribution of locality for spatial access, 
stat can be shortened to (3) and (4), where i is the i-th access: 

  
stat i()= Δt−1

k=2

i∑ = stat(i −1)+Δt−1         (3) 

with 
∆t =accessTime(i) - accessTime(i-1)        (4) 

Thus, the Stat algorithm considers that the access proba-
bility p is in direct proportion to the total number of times a 
tile is accessed and is inversely proportion to the interval 
time. As (5) 

  

p~ totalAccessTimes  
and
p~Δt−1

            (5) 

Equation (3) accumulates the reciprocal of each ∆t value 
for the value of stat. The interval time between the adjacent 
access points is used to replace the average value of multi-
access frequency. It can reflect the uneven access in an actu-
al WebGIS. The more a tile is accessed, the  higher is the stat 
value of the tile. Moreover, the shorter the interval time be-
tween the two adjacent accesses, the higher is the stat value 
of the tile, as shown in Equation 3. Furthermore, the higher 
the stat value, the higher is the probability that the tile will 
be accessed again. In this way, the stat value of a tile which 
is not accessed for a long time will gradually decrease. Thus, 
the stat value indicates the cached value of a tile; therefore, a 
tile with a lower stat value can be replaced. This method 
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helps to quickly identify the tile with the lower cached value 
and to reduce the replacement frequency. 

3. COLLABORATIVE REPLACEMENT METHOD IN 
A HETEROGENEOUS DCCS 

3.1. Cache Index 

A pyramid model for tiles is a valid method for storing 
and managing geospatial data in a multi-resolution hierarchy 
model. The idea is that by a block-and-layer operation, dif-
ferent resolution layers are generated by resampling from 
raw data. A layer of data is mapped onto a specified number 
of pixels in a block to generate a tile matrix. A tile with co-
ordinates (tx, ty, ℓ)is on the matrix on the ℓ-th layer, in line 
with tx and row ty. The client application calculates the co-
ordinates of the center tile of the current browsing view 
based on its longitude and latitude, and it then requests the 
tile by providing its coordinates (tx, ty, ℓ) to the server. The 
request format is similar to URL=http://WebGIS_ serv-
er_address/tile. aspx?L= ℓ&X=tx&Y=ty&. 

A high-efficiency cache index should be built for the 
DCCS in order to carry out operations such as creating que-
ry, updating, and deletion for cache management. When the 
number of cached tile achieves the replacement threshold 
value, the cache index can help to implement the cache re-
placement algorithm. By  considering a tile as a unit, this 
paper built an index for caching tiles based on the pyramid 
model. As shown in Fig. (1), the Hash function and linear 
linked chains were  used to build a cache index CacheIndex. 
The triplet coordinates (tx, ty, ℓ) of tile as the key variable 
were  mapped to a table entry h (0 <=h <=H) using the Hash 
function. When mapping conflict was observed, the tiles 
with  the same Hash value were  stored in the same linear 
linked chain. Thus, the index can complete a query operation 
with Time Complexity O(1*n)(where n is the length of the 
linear linked chain that connects with table entry h) and lo-
cate the requested tile in the DCCS quickly. 

 
Fig. (1). Cache index. 

In the  linear linked chain, each node is an array 
Tilecached with size 7. Tilecached[0] is the coordinate of 

tile (tx, ty, ℓ), Tilecached[1], as the Server No, is the identi-
fier of the cache server in which the tile (tx, ty, ℓ) is cached, 
and Tilecached[2] is the store offset in the cache. 
Tilecached[1] and Tilecached[2]can help to locate the 
cached tile in the cluster-based cache, in order to quickly 
obtain the tile data and return the tile to the user, reducing 
the response delay. Tilecached[3], as the first Visited Time, 
records the first request time for tile (tx, ty, ℓ). 
Tilecached[4], as the last Visited Time, records the latest 
request time for tile (tx, ty, ℓ). Tilecached[5], as the total 
Access Times, records the total access times for tile (tx, ty, 
ℓ), and Tilecached[6] records the latest stat value for the 
latest access of tile (tx, ty, ℓ), which is the replacement at-
tribute value. In each linear linked chain of table entry h, 
each node is sorted in the descending order by stat value. 
The end node has the lowest stat value. Thus, during cluster-
based cache replacement, only the end node of each linear 
linked chain is compared and the tile with the lowest stat 
value is replaced. This can reduce the search time in the re-
placement process. 

Because the cluster-based servers are heterogeneous, 
each server has a different cache capacity(CC) and service 
processing capacity(SPC, the capacity that the number of 
requests the sever can process in a unit time), as shown in  
Fig. (2). We should setup another two-dimensional index, 
ServerCaching[n][4], to record the caching state of each 
server for cache management and replacement. N is the 
number of cluster-based cache servers, ServerCaching[i][0], 
as cacheSize, is the cache capacity of server Si. ServerCach-
ing[i][1], as the cached Size, is the used cache size of server 
Si. ServerCaching[i][2] is the SPC of server Si. ServerCach-
ing[i][3], as currentServiceRequest, is the number of re-
quests that the server  currently processes (Current Service 
Request, CSR). 

3.2. Replacement flow and Collaboration in DCCS 

For a set of DCCS servers S={Si,1≤i≤N}, each server has 
a different SPC and CC, as shown in Fig. (2). The cluster 
supervisor manages and harmonizes cluster-based servers to 
ensure that the DCCS is available and scalable. Based on the 
simplest management rule and the different capacity of each 
server, considering both cached tiles and non-cached tiles, 
the basic idea of DCCS collaboration for the replacement 
method is that the server with the highest SPC value pro-
cesses more tile requests and cache more tiles as its cache 
capability allows in order to achieve load balancing for het-
erogeneous DCCS and optimal performance of cluster-based 
service response. Service flow is shown in Fig. (3), and is 
explained below. 

Step 1. After receiving the request of tile (tx, ty, ℓ),  the 
cluster supervisor computes h-value for the tile (tx, ty, ℓ) 
based on the Hash function. The h-th linear linked chain is 
retrieved connected with the table entry h for tile (tx, ty, ℓ). If 
the tile (tx, ty, ℓ) is found, this is known as a cluster cache hit 
and the Tilecached node of the tile (tx, ty, ℓ) from h-th linear 
linked chain is returned. According to Tilecached[1] (Serv-
erNo.) and Tilecached[2] (cacheStoreOf f set), tile (tx, ty, ℓ) 
is located in the cluster-based cache and the tile data is re-
turned to the user followed by the  modification of 
Tilecached[4] (currentTime) and the stat value in 
Tilecached[6] based on Equ.3. The node of tile (tx, ty, ℓ) is 
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moved to the correct location in the h-th linear linked chain. 
If the retrieval fails, then a “no cluster-cache hit” occurs, after 
which step 2 is followed. 

Step 2. A request is sent for the  tile (tx, ty, ℓ) to the back-
end cluster-based store servers to retrieve the tile (tx, ty, ℓ) 
and return the data to the cluster supervisor and the user. 

Step 3. Supervisor judges are clustered whether the 
DCCS has reached the replacement threshold. If it has, the 
stat values of the end node of each linear linked chain are 
compared in the CacheIndex, to obtain the node with the 
lowest stat value and to replace the new arriving tile (tx, ty, 
ℓ) with the outdated tile (tx’, ty’, ℓ’). Following this, the Ca-
cheIndex is maintained by deleting the node of tile (tx’, ty’, 
ℓ’) and inserting the node for tile (tx, ty, ℓ) into the correct 
linear linked chain based on its Hash value.  

Step 4. If the DCCS does not reach the replacement 
threshold, the cache server is selected with the highest value 
of left SPC (the value is calculated by SPC-CSR) which  has 
space for caching tile (tx, ty, ℓ). After this, the node of the 
tile (tx, ty, ℓ) is inserted into the correct linear linked chain 
based on its Hash value.  

4. SIMULATION AND RESULT ANALYSIS 

To simplify the simulation to verify the advantages of 
cache replacement methods, we used 90-m global Shuttle 
Radar Topography Mission (SRTM) terrain data, with tiles 
of size 128×128. In the simulation, 12 distributed cluster-
based caching servers were connected using a 1,000-Mbps 
switch to form a fast Ethernet. A cluster supervisor with suf-
ficient processing power was placed at the entrance of the 
distributed system to prevent forwarding bottlenecks. The 
requests to tiles can be expressed as a Poisson distribution 
[23] in the networked systems. Thus, in this simulation, tile 
requests were 100,000 following a Poisson distribution. The 
simulations used the replacement method proposed in this 
paper, and compared it with the classic methods, such as 
FIFO [7], LFU [8], LRU [7], and TAIL (Tile Access average 
Interval time Longest) [20]. 

The cache size in the DCCS is an important efficiency 
factor for a distributed cache replacement strategy. The rela-
tive size of the cache (RSC) is the ratio of the cache size to 
the total size of the tiles requested. Therefore, simulations, in 
which RSC were varied, were carried out to compare the 

 
Fig. (2). Heterogeneous DCCS. 

 
Fig. (3). Replacement flow and collaboration in a Heterogeneous DCCS. 
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cache replacement performance in terms of the cache hit rate 
and average request response time. 

4.1. Cache Hit Rate (CHR) 

CHR is an important indicator to verify the efficiency of 
a cache replacement method, which reflects the availability 
of cache replacement. CHR is the ratio of the direct response 
by a cluster-based cache for the tile requests to the total 
number of tile requests. Fig. (4) shows the CHR of FIFO, 
LFU, LRU, TAIL and Stat using different RSC. It indicates 
that cache hit rate  increased approximately linearly with the 
cache size. The CHR of Stat increased rapidly compared to 
the other methods when the RSC was between 40% and 
70%. FIFO and LRU take temporal locality into account 
while LFU takes spatial locality into account; thus, they both 
performed more weakly than TAIL and Stat, which consider 
both temporal locality and spatial locality. When RSC was  
lower (10%-30%), the CHR of Stat was around 5% higher 
than TAIL; while when the RSC was  between 40% and 
70%, the CHR of Stat was  around 10% higher than TAIL. 
This shows that the replacement frequency was  higher under 
lower CHR and Stat and TAIL both reflected the average 
access frequency in the short term, so they showed little dif-
ference in the CHR. When the RSC increases, Stat reflected  
long-term accumulated access frequency and access station-
arity, while TAIL only reflected average access frequency 
for the short-term. Thus, Stat considered both temporal local-

ity and spatial locality, while balancing the short-term and 
long-term access popularities. 

4.2. Average Response Time (ART) 

ART can reflect the advantages of the DCCS, and differ-
ent cache replacement methods have different influences on 
the performance of a DCCS. From Fig. (5), it can be ob-
served that the ART of the five methods decreased as the 
cache size increased. Stat's ART was 15% to 19% lower than 
FIFO, 10% to 15% lower than LRU, 10% to 17% lower than 
LFU, and 4% to 11% lower than TAIL. This shows that Stat 
provides more advantageous service performance than the 
other three methods for the large-scale users. Stat can bal-
ance  different capacities of heterogeneous servers and use 
them to the best of their capacities. Furthermore, considering 
the long-term access characteristics and access spatial and 
temporal locality, Stat showed lower replacement frequency, 
reducing operations in the cache. Using the Hash function 
and linear linked chain to manage the cache, Stat accelerated 
the retrieval process and reduced the response time, which 
means that the DCCS can serve more users and increase its 
service capacity. 

CONCLUSION  

Access to geospatial data not only has the characteristics 
of spatial and temporal locality, but also has the features of 

 
Fig. (4). Comparison of cache hit rates. 

 
Fig. (5). Comparison of average request response time. 
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long-term and short-term popularity in the WebGIS. This 
paper proposed an expression for replacement feature by 
balancing the temporal locality and spatial locality of access 
to tiles, embodying both long-term popularity and short-term 
popularity of access to tiles. Since cluster-based cache serv-
ers in a heterogeneous DCCS have different cache capacities 
and service processing capacities, this paper proposed a col-
laboration method for cache replacement in the DCCS, 
which used Hash function and linear linked chain for cache 
management and quick replacement. In future work, we will 
study the access pattern of spatial transfer based on time se-
ries during roaming for community users to find a more pre-
cise expression for spatial-temporal locality and to improve 
the performance of the replacement method. However, such 
an investigation should include large amounts of data from 
user access logs. 
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