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Abstract: In practice, due to the lack of information, imprecise variables which come from experts’ empirical data usually 

appear. In order to deal with these imprecise variables, uncertainty theory is proposed and has been proved to be an effi-

cient method. This paper introduces uncertainty theory into travelling salesman problem (TSP), in which the link travel 

times are assumed to be uncertain variables, and then a chance constrained programming model is proposed within the 

framework of uncertainty theory. The properties of the chance constrained programming model are investigated; further-

more, the uncertain model is proved to be equivalent to a deterministic model. To solve the problem, we design an algo-

rithm based on genetic algorithm. Finally, a numerical example is given, the result of which verifies the effectiveness of 

the proposed chance constrained programming model and the algorithm. 
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1. INTRODUCTION 

Travelling salesman problem (TSP) is a typical problem 
of Combinatorial Optimization, which can date back to 
Knight travel in the 18th century. Let N be the number of 
cities. TSP can be described as a scene that a salesman who 
goes to N cities to sell goods, starts at one city and visits 
each city (exactly once) in turn, finally goes back to the start-
ing point. The task is to find the shortest possible path during 
travelling salesman iterate through all the cities. TSP is 
widely used in practical problems such as logistics distribu-
tion, vehicle routing, vehicle scheduling, pipe laying, robot 
control, circuit board drilling and so on. It is also the routing 
problem’s research foundation of computer network, railway 
transportation, logistics and other fields, so it has become a 
burning issue which has been drawn tremendous atten-
tionsby the researchers [1, 2]. 

TSP is easy to state, but is notoriously hard to solve. Gar-
ey & Johnson has proved this to be a non-deterministic poly-
nomial-time hard (NP-hard) problem in combinatorial opti-
mization [3]. Its research of computational complexity lays 
the foundation of NP complete theory and is a scale of test-
ing the new algorithm. Currently, algorithm for TSP is main-
ly divided into two categories: exact algorithms and heuris-
tics algorithms. The exact algorithms can get all solutions in 
the solution space, but computational complexity will grow 
exponentially when the number of cities N increases and 
network size reaches a certain level [4]. Heuristics algo-
rithms cannot get all solutions in the solution space and can 
only find global optimal solution or approximate solution, 
but with the increase of the number of the city N, it cannot 
cause combinatorial explosion. Heuristics algorithms includ-
ed greedy algorithm, tabu search algorithm, simulated  
 

annealing, neural network, ant colony algorithm, genetic 
algorithm, particle swarm optimization algorithm and hybrid 
intelligent algorithm [5], of which genetic algorithm (GA) is 
an adaptive method of search for global optimization with 
high efficiency and robustness [6]. Therefore, this paper 
adopts the GA to solve the TSP. 

In the traditional TSP, travel time between cities is a de-

terministic numerical value. In the optimization problem, 
due to the lack of information and outside interference, deci-
sion-makers often encounter uncertain parameters. For ex-

ample, the travel time cannot be expressed as an exact value 
in many cases. If there is more adequate historical data as a 
reference, we can get probability distribution function of 

non-deterministic parameters by the probability statistics 
method, and set up a stochastic programming model to solve 
the problem. In many cases of processing non-deterministic 

variables, we neither have historical data to refer, nor carry 
out measurements. We can only use expertise to estimate the 
distribution of non-deterministic variables. Characterizing 

imprecise variations which come from experts’ empirical 
data from the angle of math, Liu proposed and improved 
uncertainty theory in many writings [7, 8]. Liu systematical-

ly studied mathematical programming problems in the uncer-
tainty environment and developed the uncertain chance con-
strained programming model [9]. Many researchers also 

studied the problem of uncertain programming, and promote 
the development of the theory and application of uncertain 
programming [10-12]. 

This paper introduces uncertainty theory into TSP, as-
suming that the travel time of salesman visiting different 
cities is uncertain variables. We set the total travel time as 
chance constraints at a certain level of opportunity. We also 
construct the chance-constrained programming model of 
travelling salesman problem under uncertain environment 
and design genetic algorithm to solve. Finally, a numerical 
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example is given to verify that the algorithm proposed in this 
paper is effective. 

2. THE CHANCE CONSTRAINED PROGRAMMING 
MODEL OF TSPNDER UNCERTAIN ENVIRON-
MENTS 

2.1. Uncertainty Theory Overview 

This section provides a brief overview of the concepts 
involved uncertainty theory to ensure the integrity of the 
paper. The following definitions and theorems are referred 
from Liu [7, 8]. 

Definition 2.1 Let  be a nonempty set, and let be an -
algebra over . Each element  in the -algebra is called an 
event. If a set function M from  to the set of the real num-
bers  satisfies the following conditions: 

Axiom 1. (Normality)  for the universal set . 

Axiom 2. (Duality) for any even . 

Axiom3. (Subadditivity) For every countable sequence of 
events  we have 

 

Then,  is called an uncertain measure. The triple 
 is called an uncertainty space. 

In order to study the product uncertain measure, Liu [9] 
gives the axiom 4: 

Axiom 4: (Product Axiom) let  be 
uncertainty spaces. The product uncertain M is an uncertain 
measure satisfying 

 

where event . 

Definition 2.2 An uncertain variable is a measurable 
function from an uncertainty space  to theset  of 
the real numbers. For any Borel set B of real numbers, the 
set  is an event of . 

Definition 2.3 The uncertainty distribution  of an uncer-
tain variables  is defined by 

 

Definition 2.4 An uncertainty distribution  is said to be 

regular if its inverse function  exists and is unique for 

each . Then the inverse function  is called 

the inverse uncertainty distribution of . 

The following theorem shows that regular uncertain vari-
ables have some good properties in the calculation. Many 
non-regular uncertain variables become regular by exerting 
the disturbance, which will greatly simplify operation be-
tween variables. 

Theorem 2.1 Let  be independent regular un-

certain variables with uncertainty distributions , 

respectively, then  is called regular un-

certain variables. If  is a strictly increasing 

about , then inverse uncertainty distribution of  

is  

 

The strictly increasing function is defined as: 

is a n-ary real valued functions. When

then ; 

when , then 

. 

The expected value of an uncertain variable  is defined 

by 

 

An uncertain variable  is called normal if it has a nor-

mal uncertain distribution 

 

Denoted by  where e and  are real numbers with 

. 

Fig. (1) Shows the uncertainty distribution of normal 
uncertain variables. 

 

Fig. (1). Normal uncertainty distribution. 

Obviously,  is a regular uncertain variable. 
Its inverse distribution function is  

 

and its expected value is . 

2.2. The Chance-constrained Programming Model of 
Travelling Salesman Problem 

Assume a businessman wants to go to n cities 
to sell commodities. He wants to select a 

route to visit each city (only once), so that he can go back to 
the starting point and hopes that the cost time is the least. 
Let  represents whether salesman visits the city  and then 
visit the city according to the order ( , represents 
salesman visits the city  and then visit the city  according 
to the order, otherwise ). In the classic TSP, the busi-
nessman’s travelling time from city to city  is deter-
mined value. 
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TSP can be built as the following mathematical model: 

 

where  

Let objective function 

 

be total travel time. Constraints (i), (ii) and (iii) represent a 

route to make salesman to go back to the beginning after he 

visited each city. Obviously, it is an increasing function 

about variable t. With the travel time between cities increas-

es, the total travel time will increases. In practice, travel time 

between cities is imprecise variables. This paper adopts un-

certain variables to represent travel time from city  to 

city . Then objective function is 

 

where  is an uncertain variable, which can’t simply 

judge the pros and cons of solution by the size of the value. 

To build such model with non-precision variables, 
Charnes & Cooper propose chance-constrained model [13]. 
Liu further applies the chance constrained model to uncertain 
programming [7]. At the same time, he studies the equiva-
lence class transformation of uncertain chance-constrained 
model, combined with properties of uncertain variables. 
Based on TSP, this paper proposed the following uncertain-
ties chance constrained programming model: 

 

Constraints (iv) is chance constraint, which requires the 
uncertainty measure of total travel time more than in the giv-
en level of opportunity condition. 

Although the chance-constrained model effectively por-
trays the TSP under uncertainty environment, the solution is 
difficult due to the constraints with an uncertain chance. In 
the next section, this paper will study equivalence class con-
version of uncertain model. 

2.3. Equivalent Conversion Of Uncertain Chance-
constrained Programming Model 

Theorem 2.2 If the travel time  between cities is regu-

lar uncertain variables in the TSP and is full of uncertainty 

distribution function , equivalent conversion of uncertain 

chance-constrained programming model is the following 

deterministic model: 

 

Proof: In the uncertain chance-constrained programming 
model, we conduct analysis of equivalence classes for con-
straint (iv). 

At first,  is an uncertain regular variables, so its 

distribution function and inverse distribution functions are 

, , respectively. In terms of a given confidence level, 

we can find a number  that satisfies the following con-

ditions: 

 

On the other hand, if  is not a large number, the un-

certain measure of  will increase. Hence, we 

can know from the definition of regular uncertainty distribution 

 

We can deduce that , because equation 

(10), the equivalence of conditions (iv) is 

 

 

According to Theorem 2.1, 

 

So the chance constraints (iv) can be converted to con-

straint (v) equivalently. Theorem 2.2 shows that solving un-

certain chance-constrained programming model (b) of TSP is 

equal to solve a deterministic model. This paper will adopt 

GA to obtain optimal solutions. 
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3. ALGORITHM 

GA is a kind of random search algorithm based on the 
biological natural selection and genetic mechanism. In gen-
eral GA begins with a group of randomly generated feasible 
solution and each solution use a string of coding to repre-
sented the individual. Fitness deter-mined by the optimiza-
tion objective function evaluates individuals. The popula-
tions are combined to produce new individuals through the 
cross and mutation operator, and gradually make the opti-
mized population evolution [14]. 

In order to solve the problem, the corresponding GA is 
designed. The basic steps of solving TSP are as follows: 

(1) Generation of urban coordinate points. 

We will put coordinate points in the two-dimensional co-
ordinate of the city ,and it can generated 200 set of coordi-
nate points randomly to ensure the effectiveness of algo-
rithms. 

(2) Determine the initial population 

Population is made of multiple chromosomes. We ran-
domly sort coordinate points of the search space, and make 
every possible path generated as a chromosome. The size of 
the initial population is 200 in the algorithm. 

(3) Calculation of fitness function 

We use the inverse of an objective function that is the in-
verse of the total time used to compare account for fitness 
function of each chromosome. 

(4) Selection operation 

We assign larger fitness of chromosome to new species 
and optimize the quality of chromosomes in the population. 
In the algorithm we use simulated roulette wheel operation 
to determine whether each individual will genetic to the next 
generation of population. 

(5) Crossover operation 

We can regard adjacent two chromosomes as parental, 
section randomly crossover. Comparing the intersection dis-
tance of gene with the front between two parental chose, the 
shorter is the new chromosome genes. Finally, we see last 
gene of new chromosome as the initial gene of the two pa-
rental generations, in turn generate new chromosome. 

(6) Mutation operation 

For each chromosome, select randomly mutation point, 
compare the distance between that point and the subsequent, 
select gene of the shortest distance, reverse mutation seg-
ment gene. 

(7) Specified number of iterations, output the best individ-
ual, terminate the entire program. 

4. ALGORITHM EXAMPLES 

To build chance-constrained programming model for the 
TSP under uncertain environment, we use the Matlab soft-
ware to write GA codes. We take 200 cities for example to 
verify the accuracy of optimization models and algorithms. 
City coordinates are shown in Fig. (2). 

 

Fig. (2). Point position coordinates. 

The GA defines that initial population size is 200, cross 

probability is 0.3, mutation probability is 0.3, maximal itera-

tion is 200. For convenience, we assume that the cost time of 

salesman walking on the path is uncertain variables 

, and the chance level is =95%. We can get 

optimal value of chance-constrained model T = 1699.82 by 

calculating. Optimal path is shown in Fig. (3). 

 
Fig. (3). The optimal path. 

By adopting the strategies in Fig. (3), we can see that the 
chance of salesman’s total travel time less than T= 1699.82 
is at least 95%. 

Average fitness of solutions in the genetic process is pre-
sented in Fig. (4). The average fitness of the chromosome 
has improved significantly during genetic process from one 
generation to 50 generations. At last, the average fitness of 
chromosome has a small -scale fluctuations. 

 
Fig. (4). The average fitness. 
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Fig. (5). Path optimization process. 

The path optimization process is shown in Fig. (5). From 
Fig. (5) we can found that optimal solution will gradually 
tend to smooth after 100 generations in an iterative, which 
means that the algorithm has a certain robustness. The exper-
imental results show that the proposed model is effective for 
solving the TSP in uncertain environments. 

5. CONCLUSION 

(1) Assuming uncertain variable is the travelling time of 
salesman visits different cities, optimization goal is the 
shortest travel time. It constructs chance-constrained 
model based on the theory of uncertainty and transforms 
the uncertainty model which is into an equivalent deter-
ministic model. 

(2) We design GA and write algorithm code and take a scale 
of cities for example to simulate. The results of theoreti-
cal analysis and simulation show that the algorithm can 
effectively get the optimal travel route by giving chance 
constrain. 
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