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Abstract: The Advanced Encryption Standard (AES) was widely accepted as the de facto standard in many security-

related fields such as Embedded Development, Information Management, and Network Communication etc. In this paper, 

we firstly study the theory of AES algorithm and then conduct performance analysis of AES algorithm on MPC processor 

whose frequency is 800MHz according to the superscalar pipeline of E600 core. Test results show that the maximum en-

cryption speed of AES algorithm is nearly 21MB/s under the circumstance of our experiment. 
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1. INTRODUCTION 

With the authorization of the National Security Agency 
(NSA) IBM developed a block cipher algorithm which be-
came the first recognized and practical Data Encryption 
Standard (DES) later.  On October 2, 2000, Rijndael algo-
rithm was adopted by the National Institute of Standards and 
Technology (NIST) as a new generation of Advanced En-
cryption Standard (AES) [1]. With the appearance of differ-
ential and linear cryptanalysis, DES was replaced by AES 
gradually at the end of 20th century. As a kind of block itera-
tion algorithm, AES has advantages of flexible design on key 
and block length, high safety and low memory usage etc. It 
could effectively resist brute-force attack, differential attack 
and linear cryptanalysis [2]. 

As we know, the MPC series processor is based on the 
core of “PowerPC” which is widely applied in the embedded 
field. In this paper, we mainly analyze the performance of 
AES algorithm under the circumstance of MPC processor 
and “VxWorks” which is an embedded real-time operating 
system. Through analyzing the feature of E600 superscalar 
pipeline and the execution time of dense memory access 
statement in source code of AES algorithm, we deduce the 
maximum encryption speed of AES algorithm under special 
testing environment. 

2. PRINCIPLE OF AES ALGORITHM 

In this section, we mainly analyze the principle of AES 
algorithm. According to the plaintext data encryption 
method, symmetric encryption algorithm can be divided into 
two categories: block cipher and stream cipher. Block cipher 
carves up the data into a fixed length, and the length of out-
put cipher block is same with that of input plaintext block. 

 

AES algorithm belongs to the block cipher algorithm. Its 
input block, output block and intermediate block in the proc-
ess of encryption or decryption are 128bits. The key sizes of 
AES algorithm can be 128, 192 or 256 bits. The encryption 
and decryption diagram is shown in Fig. (1). 

AES algorithm mainly includes four steps: SubBytes, 
ShiftRows, MixColumns, and AddRoundKey [3]. The Sub-
Bytes is a non-linear byte substitution which operates inde-
pendently on each byte of “State” by S-box table [4]. 

1) SubBytes: This step use S-box to substitute the block 
one by one byte. The S-box is a matrix defined by AES. The 
high 4 bits of every byte in its “State” is set as row value, the 
low 4 bits as column value. Then take out the element of 
corresponding rank in S-box as the output. This step provi-
des the non-linear transformation ability for AES’s encryption. 

2) ShiftRows: In this step, each row circularly moves an 
offset to the left. In the AES block of 128 bits, the first row 
of “State” remains unchanged, and the second row of the 
“State” shift left one byte circularly. Similarly, the third and 
fourth row shift left circularly 2 bytes and 3 bytes, respec-
tively. After the ShiftRows, every column in the matrix is 
composed of elements of each column in the input matrix.  

3) MixColumns: This step operates on every column in-
dependently, which make the 4 bytes of each column to 
combine with each other through linear transformation. 
Firstly, set the four elements of each column as a factor sepa-
rately. It will become a polynomial in the finite field after 
merger. Then multiply this polynomial and s fixed polyno-
mial. This step can also be considered as matrix addition and 
multiplication under the finite field [5]. The factor of matrix 
is based the maximum distance linear encoding between 
code words as well as the algorithm efficiency. These two 
steps of ShiftRows and MixColumns provide diffusibility for 
the cryptosystem. 

4) AddRoundKey: In every encryption cycle, a set of 
round keys will be produced by the expansion of main key. 
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This process is an operation of XOR between the four bytes 
of one specific column in “State” and one word of the round 
key. It has an impact on every bit in the “State” matrix in 
spite of the simple. The complexity of key expanding and 
other stages of AES can ensure the security of the algorithm. 

3. E600 CORE OF MPC PROCESSOR 

This section mainly studies the feature related to E600 
core of MPC processor, which could contribute to the under-
standing of how the instruction executes. The execution of 
instruction in E600 core is generally divided into seven 

stages, namely fetch1, fetch2, decode/dispatch, issue, exe-
cute, complete and write-back, as shown in Fig. (2) [6]. The 
follows are the brief descriptions of the main stages. 

1) Fetch: Up to 4 instructions can be fetched from the in-
struction-cache per clock cycle only when they stay in one 
cache block. The size of a single block in “L1” cache is 32B, 
and each instruction possesses 4B. Therefore, if there are 4 
instructions and the first one occupies the 0-3 bytes in a 
block, the 4 instructions can be fetched in one time. If the 
first of them possesses the 4-7 bytes in a block, the first 3 
instructions can be fetched in one time. The rest may be de-
duced by analogy. According to the description above, the 
fetch stage is possible to become the limited factor of the 
superscalar pipeline so that the pipeline can’t complete 3 
instructions in a clock cycle. 

2) Dispatch: In this stage, each instruction will be de-
coded sufficiently and be sent to the VIQ (VR Issue Queue), 
FIQ (FPR Issue Queue), or GIQ (GPR Issue Queue). And up 
to 3 instructions can be sent to GIQ in a clock cycle. The 
limitations to the superscalar pipeline in this stage are de-
scribed as follows: The instructions fetched at Fetch stage 
are stored in IQ (instruction queue), and only the lowest 3 
instructions (IQ0, IQ1, IQ2) can be sent out in the order. 

Only when there are available spaces in the CQ (Complete 
Queue) can the instructions be dispatched. There are 
available spaces in VIQ, FIQ or GIQ. There are available 
rename registers. There can be only one memory access 
instruction among the instructions that are dispatched at a 
time. 

3) Issue: In this stage, the core will read the source oper-
ands from the rename registers and register files. This stage 
also assigns and routes instructions to the proper execution 
unit. The GIQ can accommodate 6 instructions. Instructions 
can be issued out-of-order from the bottom three GIQ entries 
(GIQ2–GIQ0). An instruction in GIQ1 destined for an IU1 

 

Fig. (1). Encryption and decryption diagram of AES algorithm. 

 

Fig. (2). E600 core superscalar pipeline diagram. 
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does not have to wait for an instruction in GIQ0 that is 
stalled behind a long-latency integer divide instruction in the 
IU2. In addition, only the bottom 3 instructions GIQ0, GIQ1 
and GIQ2 can be issued. 

4) Execute: The E600 core contains 3 IU1 (Integer Unit 
1), 1 IU (Integer Unit 2) and 1 LSU (Load/Store Unit). IU1 
execute all integer instructions except multiply, divide, and 
special-purpose register (SPR) instructions. IU2 executes 
miscellaneous instructions including condition register (CR) 
logical operations, integer multiplication and division in-
structions, and SPR instructions. Via the superscalar pipe-
line, most of the instructions can be executed completely in a 
clock cycle. Several multiplication and division operations 
need 2 or more clock cycles, for they can’t make full use of 
the pipeline. 

5) Complete: Retires an instruction from the 16-entry CQ 
when all instructions ahead of it have been completed, the 
instruction has finished execution and no interrupts are pend-
ing. Retires as many as the bottom three instructions (CQ0, 
CQ1, and CQ2) per clock cycle. In this stage, up to 3 rename 
registers can be changed per clock cycle, which is to say 3 
instructions using 4 rename registers can’t retire in a clock 
cycle. 

4. PERFORMANCE ANALYSIS 

In this section, we emphatically discuss the performance 
of AES algorithm when it is running on MPC processor. It is 
worth mentioning that the performance analysis of AES al-
gorithm is based on the circumstance of “VxWorks” Operat-
ing System and MPC processor Hardware Platform with 
double “PowerPC”. The MPC processor’s frequency is 
800MHz. In addition, the AES algorithm is written by C 
Language and considers the characteristic associated with the 
E600 core [6], for example 32 integral General Purpose Reg-
isters. In the following two fractions, we compute the execu-
tive time of dense memory access instruction in the source 
code of AES algorithm. Then we analyze the executive time 
of memory access instruction sequence according to the su-
perscalar pipeline of E600 core. 

4.1. Execution Time of Single Array Access Statement 

In the source code of AES algorithm, there are 84 times 
array operating statements similar to “A[i>>8]”, 80 state-
ments of “A[(i>>8) &0xff]”, 40 “A[0]”, 8 times Pointer Op-
eration and 172 times Integer Arithmetic besides Shift and 
AND Operations. Through the auxiliary clock of E600 core, 
we measure the execution time of single array access state-
ment and the accuracy of time is 20ns. Fig. (3) is used to 
measure the execution time of another code segment which 
is placed in the area “4”. 

1) The execution time of statement of “A[i>>3]”: Put the 
code segment showed in Fig. (4) into the area “4” of Fig. (3). 
Then make 15 copies of the whole code segment, so it will 
be executed 15 times repeatedly. But the being tested code in 
the first two code segment is null, which is to measure the 
time difference between two consecutive calls of 
“sysMpc8641TmrValueGet(0)” function. In following 4 
tests, the code structure is as same as this one. The test result 
shows that the time difference between two consecutive calls 

of “sysMpc8641TmrValueGet(0)” function is 80ns. Through 
the calculation of the test, we find that the average execution 
time is 31740ns which is the total time of 255*10=2550 
“A[i>>3]”and “for loop” statements. 

2) The execution time of “for loop” statement: Similar to 
the method of test above, the average execution time of “for 
loop” statements is 5190ns. So a “A[i>>3]” statement’s run-
ning time equals (31740-5190)/(255*10)=10.4ns. As a clock 
cycle’s time of the MPC processor is 1/800MHz=1.25ns, a 
“A[i>>3]” takes 10.4/1.25=8.32 clock cycles. 

3) The execution time of “A[(i>>3) &0xff]”: According 
to test result, the average execution time of total statements 
that include “A[(i>>3) &0xff]” and “for loop” is 35190ns. 
Therefore, the execution time of each “A[(i>>3) &0xff]” is 
(35190-5190)/(256*10)=11.7ns, namely 11.7/1.25=9.36 
clock cycles. 

4) The execution time of “A[0]”: The test result shows 
that this average value of running time is 14580ns. Likewise, 
a “A[0]” statement’s execution time is (14580-
5190)/(256*10)=3.7ns with the exception of “for loop” 
statements, namely 3.7/1.25=2.96 clock cycles. 

5) The study about Data Cache: On one hand, there are 
two data caches on the MPC processor, namely “L1” Cache 
with 32KB and “L2” Cache with 1MB. On the other hand, 
10 unsigned integer arrays whose total size equals 
4*256*10=10KB are declared in the source code of AES 

 

Fig. (3). Code segment used to measure time. 

 

Fig. (4). Being tested code segment. 
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algorithm. Because of “static”, these arrays should be allo-
cated memory space before program execution. But we don’t 
know whether this 10KB data enter into Data Cache or 
Memory before running. At the first, we assume that the 
10KB data would be placed into the Data Cache from Mem-
ory until being used. However, these 4 tests above couldn’t 
verify this assumption because that the difference of execu-

tion time between the first “for loop” and others is too small 
to match the difference of access time between the memory 
and L1 cache. 

In this test, the step length of “for loop” statement is 

changed from 1 to 8, which will makes execution time of the 

first “for loop” to be far greater than that of others if the 10 

Table 1. Instruction pipeline of “A[i>>3]”. 

Clock Cycle 1 2 3 4 5 6 7 8 9 10 

srwi D I E1 E2 C      

mulhw D I - E0 E0 E1 F C   

sub D I E - - - - C   

lwzux  D I - - - E1 E2 E3 C 

Table 2. Instruction pipeline of multiple “A[i>>3]”. 

Clock Cycle 1 2 3 4 5 6 7 8 9 10 

srwi r11,r10,3 D I E1 E2 C      

mulhw r11,r11,4 D I - E0 E0 E1 F C   

sub r0,**,** D I E - - - - C   

lwzux r0, r11, r0  D I - - - E1 E2 E3 C 

srwi r12,r10,3  D I E1 E2 - - - - C 

mulhw r12,r12,4  D I - - E0 E0 E1 F - 

sub r1,**,**   D I E - - - - - 

lwzux r1, r12, r1   D - - - I - E1 E2 

srwi r13,r10,3   D I E1 E2 - - - - 

mulhw r13,r13,4    D - I - E0 E0 E1 

sub r2,**,**    D I E - - - - 

lwzux r2, r13, r2    D - - - - I - 

Clock cycle 11 12 13 14 15 16 17 18 19 20 

srwi r11,r10,3           

mulhw r11,r11,4           

sub r0,**,**           

lwzux r0, r11, r0           

srwi r12,r10,3           

mulhw r12,r12,4 C          

sub r1,**,** C          

lwzux r1, r12, r1 E3 C         

srwi r13,r10,3 - C         

mulhw r13,r13,4 F - C        

sub r2,**,** - - C        

lwzux r2, r13, r2 E1 E2 E3 C       
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arrays are stored in the Memory or “L2” Cache. The first 

running of “for loop” will transfer the data of 10 arrays from 

Memory to “L1” Cache. When the “for loop” statement is 

executed again, all memory access operations will hit “L1” 

Cache. However, the test result doesn’t support this assump-

tion. It shows that the execution time of each statement in 

first “for loop” is larger than the second for 

1080/[(256/8)*10]=3.4ns, namely 3.4/1.25=2.72 clock cy-

cles. In addition, the time difference between “L1” Cache’s 

being hit and “L2” Cache is 13-1=12 clock cycles. 

“12 2.72” indicates that most of memory access instruc-

tions hit the “L1” Cache on the first visit of 10 arrays. There-

fore, we can conclude that most data of the 10 “static” arrays 

may have been written into “L1” Cache before the running 

of source code. 

4.2. Analysis of Execution Time based on Superscalar 

Pipeline 

In this fraction, we analyze the execution time of mem-

ory access instruction of AES algorithm basing on supersca-

lar pipeline of E600 core.  

Let’s take the memory access statement of “A[i>>3]” for 
example. When this array access statement is compiled, it 
will generate the following 4 assembler instructions [6, 7]: 

 “srwi r11, r10, 3”;  “mulhw r11, r11, 4”;  “sub r0, 
/*SPR*/, /*constant*/”;  “lwzux r0, r11, r0”.  

According to literature [7], the execution of multiply in-

struction “mulhw” and memory access instruction “lwzux” 

take 3 clock cycles, respectively. Shift instruction “srwi” 

takes 2 clock cycles and only needs one to produce available 

data. It spends 1 clock cycle on executing the integer arith-

metic instruction “sub”. 

Since these three instructions “ ”have relation to 

Register “r11”, it takes 7 clock cycles to execute these four 

instructions. As shown in Table 1, the execution of 

“A[i>>3]” begins at clock cycle 3 and ends at clock cycle 9 

according to the instruction pipeline. 

Table 1 shows that it will spend only 7 clock cycles on 

running the statement “A[i>>3]” even if instructions are exe-

cuted sequentially, which is close to the time of 8.32 clock 

cycles in first test above. 

In the first test, there are 10 parallel “A[i>>3]” state-

ments in the body of “for loop”, which means the four as-

sembler instructions above will be executed 10 times repeat-

edly after compiling. Literature [6, 8] point out that E600 

core could reduce the “Data Correlation” conflict between 

two instructions by adjusting the use of 32 integral General 

Purpose Registers. According to the restrictive condition 

mentioned above of instruction execution on E600 core, we 

could deduce the instruction pipeline of multiple “A[i>>3]” 

statements. The instruction pipeline is shown in Table 2. 

From the beginning of clock cycle 8, a “A[i>>3]” statement 

will be executed every 2 or 3 clock cycles. 

Without the optimization of compiling, a “A[i>>3]” 

statement’s execution time is 8.32 clock cycles. However, it 

takes only 2~3 clock cycles with the full use of superscalar 

pipeline of E600 core, which explains the reason that speed 

of AES algorithm with GCC-O2 optimization [9] is nearly 

three times of that without optimization. 

In summary, these test results in fraction A have refer-

enced significance to analyze the execution time of AES 

algorithm although it is hard to deduce a C Language state-

ment’s running time accurately. Compared to the little inte-

ger arithmetic operations in AES algorithm, the memory 

access related statement is as dense as that in the 5 being 

tested code segments above. Therefore, the measured aver-

age execution time of code segment could represent the av-

erage running time of AES algorithm. In addition, we could 

deduce the relation between the execution time of statement 

with GCC-O2 optimization and that without optimization. 

CONCLUSION 

In this paper, we have studied the algorithm of AES 

firstly and then analyzed the characteristic which can influ-

ence the execution speed of AES algorithm in E600 core 

superscalar pipeline. By testing the execution time of main 

memory access statements in AES algorithm and writing the 

pipeline space-time diagram, we deduced that the maximum 

encryption speed of AES algorithm can reach is nearly 

21MB/s under the condition of our experiment. 
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