
Send Orders for Reprints to reprints@benthamscience.ae

1094 The Open Cybernetics & Systemics Journal, 2015, 9, 1094-1098

 1874-110X/15 2015 Bentham Open

Open Access

Brittleness Analysis of Software Architecture based on Ant Colony
Optimization

Hong Zhang
*,1

, Changzhen Hu
2
 and Xiaojun Wang

1

1
School of Computer Science & Technology, Beijing Institute of Technology, Beijing, 100081, P.R. China;

2
School of

Software, Beijing Institute of Technology, Beijing, 100081, P.R. China

Abstract: The term software architecture (SA) intuitively denotes the high level structures of a software system. It can be

defined as the set of structures needed to reason about the software system, which comprise the software components and

connectors, their relations and properties. Nowadays SA has become an important factor in the process of software devel-

opment and the researches mainly focus on the languages, modeling, dynamic evolution process, etc. In this article, the

complex system and brittleness theory are applied into the field of SA, and the concept of brittleness graph and collapse

path of SA is introduced into the analytical process. Ant colony algorithm is used for simulation. The results of simulation

demonstrate that Ant colony optimization (ACO) performs well on finding out the max collapse route of the brittleness

graph of SA.

Keywords: Ant colony algorithm, brittleness analysis, complex system, software architecture, software security.

1. INTRODUCTION

Software systems, as independent entities, have drawn

more and more attentions in academia and industrial field.

The security, reliability, usability and maintainability all

have evaluated the performance of software systems from

different perspectives.

The software crisis in the 1970s diverts peoples’ focus

from data structure and algorithms to the design of module

and SA in larger-granularity. With the mature techniques, as

a means of improving the quality of software, supporting the

development and reusability of software, the research on SA

has gained fruitful achievements. This accomplishment cov-

ers the early design phase extending to other phases of the

software development life cycle, such as requirement phase,

realization phase, deployment phase and post-development

phase. SA styles [1] define idiomatic patterns of system or-

ganization, which help the system architects to construct the

software system, specifically the styles define the terminol-

ogy of the elements, the relevant configuration rules, the

semantic interpret contents and the system analysis. When

choosing the styles in software system designing, it is impor-

tant to fully consider the characteristics of software system

and its styles. Some common styles are listed in Table 1.
Current researches on SA focus on the following aspects:

1.1. Description of Software Architecture

The description aspect involves in what way and by what

means to describe SA. There are mainly two aspects of the
description.

(1) Software architecture languages such as UniCon,
Rapide, Darwin, Aesop, C2, Acme are all description lan-
guages, each has its own features in describing SA [2].

(2) Software architecture views: Comprehensive SA
views help the system architects a lot in sharing techniques,
improving the quality of software system, enhancing the
effciency in developing, and better views also illustrate the
principle of separation of concerns. The “4+1” view model
from Kruchten integrates the logical view, the development
view, the process view and physical view through the
senario. Views and Beyond Model from CMU-SEI includes
the module view, the component-connector view and the
dispatch view. In [3] the authors give a detailed summary on
the multi-view representation of SA.

1.2. Design of Software Architecture

The design of SA refers to the process that meets the

fixed tactics and styles according to some functional and non

functional requirements. One of the designing goals is to

repeatedly use the architecture styles to support the software

reuse and to study the model representation in earlier stage,

the analysis, identification, evaluation in mid-term, and the
experience conclusions of designing in later stage.

1.3. Analysis and Evaluation of Software Architecture

Giving explicit analysis and evaluation help in checking

the validity of SA model in the design phase, finding out the

hidden defect and revising them in time, which guarantees

the software will run normally. The evaluation of SA mostly

concerns the quality attribute, which covers the performance,

the security, the reliability and the usability. There are three

main qualitative evaluation methods, which are based on the

questionnaire or check table, based on the scenario and based
on the metric respectively.

Brittleness Analysis of Software Architecture The Open Cybernetics & Systemics Journal, 2015, Volume 9 1095

Table 1. Result of experiments and theory.

Dataflow system

Batch sequential

Pipes and filters

Call-and-return systems

Main program and subroutine

OO systems

Hierarchical layers

Independent components

Communicating process

Event systems

Virtual machines

Interpreters

Rule-based systems

Data-centered systems

Databases

Hypertext systems

Blackboards

1.4. Dynamic Evolution and Reusability of Software Ar-
chitecture

The dynamic evolution [4] and static scalability both
cover the research category of SA. The dynamic evolution
includes three aspects: the interactive dynamic, the structural
dynamic and the architectural dynamic. Nowadays software
systems demand for support not only in the designing phase
but also in the running environment. The research on dy-
namic architecture includes several languages, which support
the structural description and the tools supporting the dy-
namic evolution process. The dynamic structure can accept
or deny the changes inside or outside the system according
the predefined policies and adjust itself to the changing situa-
tion [2, 5].

The reusability of SA has a larger-granularity than that of
the code, module and component. It can also effectively re-
duce the cost in software development and maintenance; to
improve the quality in developing process. The above con-
tents are about past research on SA, however, in this article
we do the analysis of SA from a different perspective of
view, putting the brittleness concept into the analysis of SA
in combination with the complex system. In best of our
knowledge, the notion of complex system and brittleness on
SA is the first time introduced in this article.

2. COMPLEX SYSTEM AND BRITTLENESS THE-
ORY

The research on complex system started from 1970s,
which was composed of dissipational theory [6], synergetics
[7] and catastrophe [8], and most of the study was on the
system state from disorder to order and evolution from low-
level to high-level. Open complex giant system [9], is char-
acterized by its openness, complexity, hierarchy and emer-
gent property in evolution process, has a close connection
with synergetic, catastrophe, reliability and stability. Accord-
ing to this notion, the systems can be classified into four
categories which are simple systems, simple giant systems,
the complex giant systems and special complex giant systems.

In [10] the author gave the idea of judging criteria of a
complex system in the doctoral dissertation. The notion of
brittleness was introduced by [11], which is mainly about the
system’s sensitive behaviour showed in internal or external
complicated environment with uncertainty. Brittleness refers
to the characteristic possessed in a part or a subsystem Si of

system S, which has a strong sensitivity to the environment,
that is, once disturbed or attacked, Si will breakdown and
lead to a chain reaction, resulting in global collapse. Thus, Si
is called the brittleness source.

The brittleness possessed in a complex system can be de-
scribed by “self-organized criticality” (SOC), which was
proposed by P Bak. in Physical Review Letters in 1987 [12]
and was described by using the sandpile model (See Fig. 1).

Fig. (1) The sandpile model.

Sandpile model is described as follows: drop the sands
with constant speed and altitude to a platform. As time goes
on, the sands fell down on the platform gradually form a
sandpile. There exists one moment after which when adding
a grain of sand will result in sandpile collapsing. With the
help of slow-motion camera, P Bak. can calculate how many
grains of sand can be affected when dropping one grain of
sand at top of sandpile. Sandpile can be looked as a non-
linear system with a persistent energy supply. The scale of
sandpile collapse has a typical power function distribution
relationship with the collapse frequency. SOC is considered
as the dynamic cause which leads to power law distribution
and the power law is known as the evidence of complex sys-
tem having SOC.

Like a specific product which satisfies the needs of hu-
man beings, software system also meets the judging criteria
of complex system. During operation, the software system
changes from one state to another, being constantly affected
from internal or external environment; when the integrated
influence put on it equals to the load it can bare, the software
system reaches a “self-organized criticality” state, under that
circumstance the software system will lead to a chain break-
down and result in a global collapse if affected by any fur-
ther disturbance. This process shows the brittleness charac-
teristic of the software system and the part which leads to the
global collapse is called the brittleness source.

3. APPLICATION OF BRITTLENESS ON SOFTWARE
ARCHITECTURE

A brief introduction of some relevant terms on brittleness
graph will be given in order to give a detailed description of
the application of brittleness on SA. Brittleness graph G of
SA:

G = {V, E, D} (1)

Vertex set V is composed of components and connectors,
the edge-set E is composed of the pairs of components and

1096 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Hong Zhang

connectors which have direct relations. D represents the rela-
tions value set which is composed of brittleness value, repre-
sented with {rij , i, j V, i, j 1}. Brittleness Value: It rep-
resents the strong or weak relations among each two vertexes
those have direct brittleness relations. Collapse Path: It is
also called Hamilton path in brittleness graph of SA. Suppos-
ing that G = {V, E, D} is the brittleness graph of SA, if in
the process of the software system collapses, there exist H
and has following two equations:

V(H) = V(D) (2)

E(H) = E(D) (3)

then the directed path H which goes through each vertex
once and only once is called a collapse path of G, or Hamil-
ton brittleness path. Max Collapse Path: It is defined as a
Hamilton path which has the max brittleness product among
all the product values. Brittleness Source: It refers to the
component or the connector which can lead to the system
collapse, and it can be looked as the starting point of the col-
lapse path in brittleness graph of SA.

4. BRITTLENESS SIMULATION ON SOFTWARE
ARCHITECTURE

In section 1, a brief introduction on the common SA
styles is given. In order to illustrate the application of brittle-
ness theory on SA, we choose the pipes and filters as an ex-
ample. This style is applied on a predened independent com-
puting in ordered data in which lters achieve related func-
tions and the pipes are used in the data input, output and
transition. Fig. (2) depicts a typical layout of this type. The
modeling procedure and simulation process are given as fol-
lows:

4.1. Transition from Software Architecture to Brittleness

Graph

On the basis of Fig. (2), we put the topology of this style
into the coordinate plane and change it into the correspond-
ing directed graph, in which the vertexes represent the filters
and pipes and the edges represent the brittleness relations
between filters and pipes. We can get coordinates in the
figure for each node, which are represented by Matrix C:

=

The edge-set is {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (3, 6),
(6, 3)}. Supposing after Delphi Method which is a structured
communication technique relying on a panel of experts, the
brittleness values are given to each edge represented in set
D:

=

4.2. Simulation

Based on the brittleness graph made from above proce-
dures, we adopt the ant colony optimization algorithm to find
out the max collapse path of software system. As one of the
mathematical optimization algorithms, the ant colony opti-
mization algorithm was proposed by M. Dorigo in his doc-
toral dissertation, which effectively solved the Travelling
Salesman Problem(TSP) and Job scheduling Problem. The
ant has the ability to find out the shortest path between food
and ants’ nest without any tips, no matter how the environ-
ment changes. The ability depends on the pheromone re-
leased on the path it goes through, and the subsequent ants
can perceive the existance and strength of the pheromone. As
a result, this process can form a positive feedback. Ant Col-
ony Optimization can be classified into three types according
to the ways of the pheromone updates in one cycle, which
are antcycle system, ant-quantity system and ant-density
system.

The algorithm in our experiment is antcycle system, the
parameters are NCmax = 100, m=6, = 1, = 5, =0.7,
Q=100, respectively represent the max iteration, the number
of ants, the importance of the pheromone, the importance of
heuristic factor, pheromone evaporation coe cient and in-
tensity coe cient of pheromone increment. Fig. (3) shows
the result of the simulation. Furthermore, the number of ants,
the iteration times and other parameters are changed, that is,
NCmax = 3000, m=20, = 1, = 2, =0.1, a new result is
shown in Fig. (4).

4.3. Analysis of Simulation

There are some aspects need to explain:

(1) selection of algorithm Antcycle system is chosen to
simulate and evaluate the performance of path selection after
a comprehensive study on the three models. As for this

Fig. (2) Pipes and filters.

Brittleness Analysis of Software Architecture The Open Cybernetics & Systemics Journal, 2015, Volume 9 1097

model, the probability of the ant choosing a path mainly de-
pends on the importance of the pheromone and the impor-
tance of heuristic factor . The optimal value are these: is
about 1, is from 5 to 10, and is around 0.7.

 (2) The left side of both figures show the max collapse
path under different parameters, the starting point and termi-
nal point are directly connected by dotted lines. The max
collapse path length at right side comes to a stable state at
very early time. Both of those are conformed as the antcycle
system model.

(3) The antcycle algorithm can avoid numerous invalid
searches, so it can quickly find out a good solution but not in

a stagnation state. This is advantageous in finding the max
collapse path.

(4) Comparing the two figures, when we increase the
ants, iteration times and other parameters the algorithm is
robust to the changing parameters. So the algorithm is suit-
able for our problem resolving.

CONCLUSION

Brittleness gives us a new perspective to analyse the
software system, which is treated as a complex system. The
brittleness graph is transformed from the software architec-
tural topology on the basis of the analytical process with

Fig. (3). Ant colony optimizaion simulation.

Fig. (4). Result with parameters changed comparing to Fig. (3).

1098 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Hong Zhang

experts’ experience. Through simulation with the ant colony
optimization algorithm the brittleness source and the global
collapse path of SA can be found. We should also focus on
the following aspects in the future research:

(1) Developing practical tools in finding out the brittle-

ness source and collapse path of software system It is neces-

sary to develop a brittleness analytical tool which can help

the system architect and analyst to locate the brittleness

source and the max collapse path automatically.

(2) Taking effective measures after finding out the brit-

tleness source and the max collapse path The brittleness

source and max collapse path of software system based on

the brittleness graph can be obtained, but how to effectively

prevent the system from collapse? This is a big challenge.

(3) Putting the brittleness analysis into design phase The

collapse path of software system got from the simulation

should be feedback to the design phase, based on which we

can combine the notion of identity, difference and antago-

nism in Set-Pair Analysis (SPA) with the brittleness analysis

to guide the designing of SA in early phase.

CONFLICT OF INTEREST

The author confirms that this article content has no con-

flict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES
[1] D. Garlan, R. Allen, and J. Ockerbloom. “Exploiting style in archi-

tectural design environments”, ACM SIGSOFT Software Engineer-
ing Notes, vol. 19, pp. 175-188, Dec. 1994.

[2] N. Medvidovic and R. N. Taylor, “A classification and comparison
framework for software architecture description languages”, IEEE

Transactions on Software Engineering, vol. 26, pp. 70-93, Jan.
2000.

[3] P. Clements, D. Garlan, R. Little, Robert Nord, and J. Stafford,
Documenting software architectures: views and beyond, NJ: Pear-

son, 2003, pp. 740-741.
[4] J. Cámara, P. Correia, R. D. Lemos, G. David P. Gomes, B.

Schmerl, and R. Ventura, “Evolving an adaptive industrial software
system to use architecture-based self-adaptation”, SEAMS ’13 Pro-

ceedings of the 8th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, San Francisco,

CA, 2013, pp. 13-22.
[5] S. Kang and D. Garlan, “Architecture-Based Planning of Software

Evolution”, International Journal of Software Engineering and
Knowledge Engineering, vol. 24, pp. 211-242, Nov. 2013.

[6] I. Prigogine and G. Nicolis, Self organization in non-equilibrium
systems, NY: Willey, 1977, pp. 1-15.

[7] H. Haken, Synergetik, NY: Springer, 1983, pp. 1-44.
[8] R. Thom, Stabilité structurelle et morphogénèse, NY: Benjamin,

1972, pp. 1-20.
[9] H. S. Tsien, J. Y. Yu and R. W. Dai, “A new discipline of science-

the study of open complex giant system and its methodology”,
Chinese Journal of Nature, vol. 13, pp. 3-10, 1990.

[10] Q. Wei, “Brittleness Theory of Complex System and its Application
to Crisis Analysis”, PhD thesis, Harbin Engineering University,

Harbin, China, 2004.
[11] A. A. Fouad, Z. Qin, and V. Vittal, “System vulnerability as a

concept to assess power system dynamic security”, IEEE Transac-
tions on Power Systems, vol. 9, pp. 1009-1015, May 1994.

[12] P. Bak, C. Tang, K. Wiesenfeld, “Self-organized criticality: An
explanation of 1/f noise”, Physical Review Letters, vol. 59, pp. 381-

384, Mar. 1987.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Hong Zhang; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

