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Abstract: This paper discusses the role of evolutionary computation in visual perception for partner robots. The search of 

evolutionary computation has many analogies with human visual search. First of all, we discuss the analogies between the 

evolutionary search and human visual search. Next, we propose the concept of evolutionary robot vision, and a human 

tracking method based on the evolutionary robot vision. Finally, we show experimental results of the human tracking to 

discuss the effectiveness of our proposed method. 
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INTRODUCTION 

 Visual systems have been discussed from various points 

of view [1-10]. Furthermore, various types of intelligent 

methods [11-23] have been applied for image processing in 

real world applications thanks to the development of cheap 

and small digital cameras and signal processing boards with 

low energy consumption. Especially, information extraction 

by image processing plays the essential role in monitoring 

systems, surveillance systems, and automatic control. The 

visual systems including image processing can be divided 

into passive vision and active vision. In general, the passive 

vision is used for the focused information extraction toward 

a specific direction, while the active vision is used for the 

information extraction by updating the sensing direction and 

range in the vast area where the range of visual scene is re-

stricted. In fact, the active vision is one of the main methods 

for the information extraction of an intelligent robot in order 

to extract perceptual information from the environment. 

 Various technologies for image processing are required 

for realizing the robot vision, e.g., color processing, target 

detection, template matching, shape recognition, motion ex-

traction, and optical flow. We have applied spiking neural 

networks, cellular neural networks, self-organizing map, and 

others for human detection, motion extraction, and shape 

recognition [24-30]. In this paper, we focus on people track-

ing. The tracking problem of people or objects is signifi-

cantly harder than that of a single person or object. The peo-

ple tracking problem includes two problems of people detec-

tion problem in each image and a tracking problem of de-

tected people over time. In previous works, people tracking 

problems have been mainly solved by appearance-based 

methods. Kalman filter, particle filters, genetic algorithms,  
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particle swarm optimization, and others [11-22] have been 

applied in appearance-based methods. Furthermore, dynamic 

model of human movement is also applied to improve the 

accuracy of people tracking. These methods try to detect the 

features of human appearance, and to trace them over time, 

but there are problems on variability of appearance features 

and computational cost in the real-time people tracking. 

Therefore, we use only colors corresponding to human face 

and hair, and propose a local genetic algorithm based on 

clustering to realize the fast coarse search for people track-

ing. 

 This paper is organized as follows. Section II discusses 

the analogy between human visual search and evolutionary 

search. Section III and IV explain the detail of the local ge-

netic algorithm based on clustering and people tracking for 

partner robots. Section V shows preliminary simulation re-

sults of the proposed method in a dynamic environment, and 

experimental results of people tracking. 

EVOLUTIONARY ROBOT VISION 

 Evolutionary computation (EC) is a field of simulating 

evolution on a computer [13]. Evolutionary optimization 

methods are fundamentally iterative generation and alterna-

tion processes of candidate solutions. The optimization is 

done by the multi-point search operating on a set of indi-

viduals, which is called a population. First, we discuss the 

role of evolutionary search in dynamic environments. Fig. 

(1) shows the temporal patterns of spatial changes in dy-

namic environments where the vertical axis indicates the 

state of environmental conditions represented as a value. If 

the search speed of EC is faster than the changing speed of 

the environmental conditions, EC can obtain feasible solu-

tions in the environmental conditions. However, EC should 

be adaptive to the facing environmental conditions if the 

environmental changes can be observed. If the environ-

mental change is very slowly and the change is small (Fig. 

1a), the mutation range should be large according to the 

amount of the environmental change. Basically, this kind of 
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change can be considered as some noise in a relatively sta-

tionary environment. The environment of Fig. (1b) includes 

big changes, but the environmental condition is relatively 

stationary after a big change. If the big change can be ob-

served, most of candidate solutions should be replaced with 

randomly generated candidate solutions. The environment of 

Fig. (1c) is changing non-stationary with both features of 

Fig. (1a,b). In general, the change of visual images corre-

sponds to the environment of Fig. (1c). The visual image of a 

mobile robot changes according to both the dynamics of en-

vironmental changes and the robotic motion. Therefore, we 

discuss visual perception based on active robot vision and 

EC from the viewpoint of human visual perception. 

 

Fig. (1). Patterns of changes in dynamic environments. 

 To realize a visual perception system for a robot, we 

should take recent works of psychology into account, espe-

cially, sensation, perception, and attention. Sensation is the 

basic information presented to our sense organs, while per-

ception is organized and involves a process of attaching 

meaning to sensations. W. James [1] emphasized the impor-

tance of selective attention in the following; “Millions of 

items of the outward order are present to my senses which 

never enter into my experience. ... My experience is what I 

agree to attend to. Only those items which I notice shape my 

mind”. The research of selective attention leads to the prob-

lem of figure-ground organization. Visual perception is or-

ganized into a central object called figure and its blurred 

surroundings called ground. Our visual system operates in a 

flexible and adaptive manner to perceive the environment by 

using bottom-up and top-down processes. Bottom-up proc-

essing depends directly on external stimuli, while top-down 

processing is influenced by expectations, stored knowledge, 

context, and so on. 

 Fig. (2) shows the comparison between the visual search 

and evolutionary search. The left and right figures show the 

distribution of search points in the focused search and dis-

tributed search, respectively. The visual search controls the 

searching area based on the fast movement of attentive point. 

The region of interest (ROI) for the information extraction is 

deeply related with the search of geometrical features in-

cluded in the visual target. The search results are reflected to 

the next visual search. On the other hand, the evolutionary 

search controls the searching area based on the selection 

pressure to candidate solutions. If the selection pressure is 

high, the candidate solutions are centralized toward the better 

candidate solutions. Otherwise, candidate solutions are glob-

ally distributed in the search space. The next search points in 

the evolutionary search are generated by crossover and muta-

tion. The search in ROI is mainly performed by mutation and 

local search, while a new search point for ROI is generated 

by crossover. The degree of interest is calculated by the fit-

ness value. If the fitness value is high, the focused search 

should be performed. We apply a steady-state genetic algo-

rithm (SSGA) [16] to realize the continuous and real-time 

search for the robot vision like human visual perception in a 

dynamic environment. 

(a) Movement of attentive points in the visual search 

 

(b) Distribution of candidate solutions in evolutionary search 

 

Fig. (2). Comparison of visual search and evolutionary search. 

LOCAL GENETIC ALGORITHM BASED ON CLUS-
TERING 

A. Local Genetic Algorithm in Dynamic Environment 

 The previous section discussed the features of EC in dy-

namic environment. Next, we discuss a method for the opti-

mization and adaptation in a dynamic environment. Gener-

ally, it is very difficult to realize both optimization and adap-

tation in a real world problem. In order to perform the opti-

mization, it takes much computational time and cost, but the 

environmental condition might change much. Therefore, the 

real-time adaptation should be done, but all the population 

should trace the local minima as much as possible in real-

time adaptation, because the current best solution is not 

guaranteed as the best solution in future. We propose a local 

genetic algorithm based on clustering (LGAC) as a distrib-

uted search method based on local hill-climbing of clustered 

individuals (Fig. 3). 

 Basically, each individual is composed of diploid, i.e., 

the self-best solution and candidate solution. If the fitness 

value of the candidate solution is larger than that of the self-

best solution, the candidate solution is replaced with the self-

best solution. In this way, each individual performs the elitist 

selection. We use the term of personal best or self-best that 

inspired from particle swarm optimization (PSO) invented 

by Eberhart and Kennedy [14,15]. Furthermore, we use the 

elitist crossover in the following updating rule; 

xi, j xi, j + 1r1(xi, j
S xi, j )

+ 2r2 (xL , j
S xi, j ) + N N(0,1)

          (1) 

where xi, j
S

 is the self-best solution; xL , j
S

 is the locally best 

solution in a cluster; r1  and r2 , are uniform random value 

between 0 and 1.0; N(0,1) is a normal random value with 

average of 0 and 1.0, and 1 , 2 , and N  are coefficients. 

Furthermore, we can use adaptive mutation as follows; 
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where fmax  and fmin  are the maximal value and minimal 

value of fitness values in a local cluster or the population; 
1
 

and 
2
, are coefficient and offset, respectively. The pro-

posed method is similar to PSO, but in this paper, we explic-

itly use a mutation factor in order to trace local minima in a 

dynamic environment. 

 We use the k-means algorithm [23] as a clustering 

method. The k-means algorithm is one of the most popular 

iterative descent clustering methods. The inputs to K-means 

algorithm are (xi,1, xi,2 , ..., , xi,m )  of the ith candidate solution. 

The number of clusters is K. When the reference vector of 

the kth cluster is represented by rk = (rk ,1, rk ,2 , ..., rk ,2 ) , the 

Euclidian distance between the ith input vector 

ui = (xi,1, xi,2 , ..., , xi,m )  and the kth reference vector is defined as 

di,k = ui , rk             (3) 

 Next, the reference vector minimizing the distance 
di,k  is 

selected by 

ci = arg min
k

ui{ , rk }            (4) 

where ci  is the cluster number which the ith input belongs 

to. 

 After selecting the nearest reference vector to each input, 

the kth reference vector is updated by the average of the in-

puts belonging to the kth cluster. If the update is not per-

formed at the clustering process, this updating process is 

finished. Fig. (4) shows an example of the search of the pro-

posed method in a dynamic environment using Gaussian 

functions. As shown in Fig. (3), the number of local clusters 

should be larger than that of modalities in the dynamic envi-

ronment. However, the change of fitness landscape is un-

known beforehand. Therefore, we prepare the sufficient 

number of clusters. In this way, the genetic search is mainly 

conducted within a local cluster. 

 

Fig. (3). Search of LGAC in a dynamic environment; fitness land-
scape is depicted as monochrome gradation. 

 

 

(a) Each Gaussian function has a specific velocity 

 

(b) An example of fitness landscape (inverted) 

 

Fig. (4). Patterns of changes in dynamic environments. 

B. Preliminary Simulation Results 

 In order to perform preliminary comparison, we use the 

following fitness function to be minimized; 

fi = 1 max
k

exp k yk ,1 xi,1( )
2

+ yk ,2 xi,2( )
2

( )( )          (5) 

where (yk ,1, yk ,2 )  is the center of the kth Gaussian function; k  

is the coefficient, (xi,1, xi,2 )  is ith candidate solution (Fig. 4). 

The position of each central point is updated by using a ve-

locity vector (vk ,1, vk ,2 )  that is predefined. The reason why we 

used the above max operator is to keep the minimal value at 

0 through the change of dynamical environment. In order to 

discuss the traceability of the candidate solutions to each 

local minimum, we use the following distance index; 

lk = min
i

yk ,1 xi,1( )
2

+ yk ,2 xi,2( )
2

( )            (6) 

 In this paper, we use 9 Gaussian functions. The popula-

tion size is 100. We show preliminary simulation results by 

using the following parameters in Table 1. Case 1 and Case 2 

mainly use the self-best solutions; Case 3 and Case 4 mainly 

use the local best solutions; Case 5 and 6 uses no adaptive 

mutation and Case 7~10 uses all parameter solutions. 

 Fig. (5) shows snapshots of the search of candidate solu-

tions in Cases 2, 6, and 10 at the final generation of 5000 

generations. We obtained similar simulation results on Cased  
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1, 2, 3, and 4. In Case 2, it is a little bit difficult to trace all 

Gaussian functions, because the search of candidate solu-

tions strongly depends on the locally best solutions. In Case 

6 without adaptive mutation, it’s very difficult to trace all 

Gaussian functions, because the search of candidate solu-

tions strongly depends on the locally best solutions, and all 

candidate solutions converged into the locally best solutions 

quickly. On the other hand, in Case 10, all the candidate so-

lutions can trace all the Gaussian functions well. 

Table 1. Parameters Used in Simulations 

 

Case 1 2 N K 

Case 1 0.2 0 0.15 20 

Case 2 0.2 0 0.15 50 

Case 3 0 0.2 0.15 20 

Case 4 0 0.2 0.15 50 

Case 5 0.2 0.2 0 20 

Case 6 0.2 0.2 0 50 

Case 7 0.2 0.2 0.15 20 

Case 8 0.2 0.2 0.15 30 

Case 9 0.2 0.2 0.15 40 

Case 10 0.2 0.2 0.15 50 

 

 Next, we conducted comparison of performance in detail. 

Figs. (6,7) show the simulation results of Cases 1 and 2. 

Each candidate solution tries to trace Gaussian functions 

separately and non-cooperatively. The average fitness value 

is decreasing soon, but the maximal value is still large until 

the end of generations. In this result, the maximal distance is 

increasing after 1000 generation. When they are separating 

after several Gaussian functions are overlapped in the mid-

dle, the candidate solutions cannot trace some of them. Here 

the self-best solution is not the best every generation. As a 

result, it is difficult to maintain better solutions well. How-

ever, the difference between the current solution and self-

best solution makes the temporal descent direction. There-

fore, the candidate solutions can trace Gaussian functions, 

but the tracing accuracy is not so good. 

 Figs. (8,9) show the simulation results of Cases 3 and 4. 

In the cases, each individual tries to trace Gaussian functions 

according to the information of only the locally best solu-

tions, not the self best solution. As a result, the distributions 

of candidate solutions are larger than Cases 1 and 2. Fur-

thermore, the performance of Cases 3 and 4 depends strongly 

on the number of clusters. If the number of clusters is small, 

the average fitness value is improved, but the traceability is 

decreasing. 

 Figs. (10,11) show the simulation results of Cases 5 and 

6. Only the use of self-best and locally best solutions cannot 

guarantee to trace all Gaussian functions although the num-

ber of clusters is large. This results show the effectiveness of 

adaptive mutation in the search in a dynamic environment. 

 Figs. (12-15) show the simulation results of Cases 7 to 

10. The traceability is improved as the number of clusters is 

increasing. In case 10, all the population can trace all Gaus-

sian functions well. 

(a) Case 2 

 

(b) Case 6 

 

(c) Case 10 

 

Fig. (5). The distribution of candidate solutions in a dynamic envi-

ronment; big yellow circle indicates the position of each Gaussian 
function. 
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(a) Change of fitness values 

 

(b) Change of distance 

 

Fig. (6). The traceability of candidate solutions in a dynamic envi-
ronment in Case 1. 

(a) Change of fitness values 

 

(b) Change of distance 

 

Fig. (7). The traceability of candidate solutions in a dynamic envi-
ronment in Case 2. 

(a) Change of fitness values 

 

(b) Change of distance 

 

Fig. (8). The traceability of candidate solutions in a dynamic envi-
ronment in Case 3. 

(a) Change of fitness values 

 

(b) Change of distance 

 

Fig. (9). The traceability of candidate solutions in a dynamic envi-
ronment in Case 4. 
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(a) Change of fitness values 

 

(b) Change of distance 

 

Fig. (10). The traceability of candidate solutions in a dynamic envi-
ronment in Case 5. 

(a) Change of fitness values 

 

(b) Change of distance 

 

Fig. (11). The traceability of candidate solutions in a dynamic envi-
ronment in Case 6. 

(a) Change of fitness values 

 

(b) Change of distance 

 

Fig. (12). The traceability of candidate solutions in a dynamic envi-
ronment in Case 7. 

(a) Change of fitness values 

 

(b) Change of distance 

 

Fig. (13). The traceability of candidate solutions in a dynamic envi-
ronment in Case 8. 
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(a) Change of fitness values 

 

(b) Change of distance 

 

Fig. (14). The traceability of candidate solutions in a dynamic envi-
ronment in Case 9. 

(a) Change of fitness values 

 

(b) Change of distance 

 

Fig. (15). The traceability of candidate solutions in a dynamic envi-
ronment in Case 10. 

 Figs. (6,8,10,12) show the simulation results where the 

number of clusters is set at 20, and Figs. (7,9,11,15) show 

the simulation results where the number of clusters is set at 

50. In case of 20 clusters, the traceability of Gaussian func-

tions is not good. On the other hand, the traceability of 50 

clusters is better than that of 20 clusters. However, as the 

number of clusters increases, the computational cost also 

increases. Therefore, the number of clusters should be re-

duced as much as possible. 

 To summarize, the self-best and locally best solutions are 

useful to generate the search directions. The self-best pa-

rameter affects better result than locally best parameter with 

adaptive mutation (Figs. 6-9) but the result of both the self-

best and locally best solutions shows the difficulty to trace 

all Gaussian functions without the adaptive mutation (Figs. 

10,11). And finally, the simulation results using all factors 

support the effectiveness of the proposed method (Figs. 12-

15). 

PEOPLE TRACKING FOR PARTNER ROBOTS 

A. Partner Robots 

 We developed two different types of partner robots; a 

human-like robot called Hubot and a mobile PC called MO-

BiMac [24-30] in order to realize the social communication 

with humans. MOBiMac is composed of two CPUs used for 

PC and robotic behaviors (Fig. 16). The robot has two servo 

motors, four ultrasonic sensors on the sides, four light sen-

sors on the bottom, a microphone, and CCD camera. The 

basic behaviors of the robots are visual tracking, map build-

ing, imitative learning, human classification, gesture recog-

nition, and voice recognition [24-30]. In this paper, we apply 

the proposed method to realize the people tracking by the 

partner robots. 

B. Human Detection 

 Human detection is one of the most important tasks for 

partner robots. Pattern matching has been performed by 

various methods such as template matching, cellular neural 

network, neocognitron, and dynamic programming (DP) 

matching. In general, pattern matching is composed of two 

steps of target detection and target recognition. The aim of 

target detection is to extract a target from an image, and the 

aim of the target recognition is to identify the target from 

classification candidates. Since the image processing takes 

much computational time and cost, the full size of image 

processing to every image is not practical. Therefore, we use 

the reduced size of image to detect a moving object for the 

fast human detection. 

 First, the robot calculates the center of gravity (COG) of 

the pixels different from the previous image as the differen-

tial extraction. The size of image used in the differential ex-

traction is updated according to the previous human detec-

tion result. The differential extraction calculates the differ-

ence of the number of pixels based on color difference be-

tween the previous and current images. If the robot does not 

move, the COG of the difference represents the location of 

the moving object. Therefore, the main search area for the 
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human detection can be formed according to the COG for the 

fast human detection. 

 The area corresponding to human skin and hair colors is 

extracted by the proposed method, LGAC, based on template 

matching. Fig. (17) shows a candidate solution of a template 

used for detecting a target. A template is composed of nu-

merical parameters of gi,1 , gi,2( ) , gi,3 , and gi,4 . The number of 

individuals is G. Fitness value is calculated by the following 

equation, 

  
F

i
= C

Skin
+ C

Hair
+

1
C

Skin
C

Hair 2
C

Other
         (7) 

where  
C

Skin ,  
C

Hair  and  
C

Other  indicate the numbers of pixels 

of the colors corresponding to human skin, human hair, and 

other colors, respectively; 
 1

 and 
 2

are the coefficients 

 1
,

2
> 0( ) . 

 

Fig. (16). Hardware architecture of partner robots. 

C. Human Tracking 

 The human tracking is performed based on human candi-

dates generated by LGAC for the human detection. Since 

LGAC extracts the area of skin colors and hair colors in the 

human detection, various objects except humans are de-

tected. Therefore, the human tracking is performed according 

to the time series position of a human candidate gi,1 , gi,2( ) . 

The number of human candidates obtained by LGAC is 

equal to the number of clusters. Therefore, several human 

candidates might correspond to a single person in the image 

(Fig. 18). The position of a human candidate in the human 

tracking X j ,1 , X j ,2( )  is updated by the nearest human candidate 

position within the tracking range as follows, 

  

X
j ,1

= (1 )X
j ,1

+ g
i,1

X
j ,2

= (1 )X
j ,2

+ g
i,2

          (8) 

where  is the updating rate. In addition, the width and 

height of the human candidate for the human tracking 

X j ,3 , X j ,4( )  are updated by the size of the detected human 

gi,3 , gi,4( ) , 

  

X
j ,3

= (1 )X
j ,3

+ g
i,3

X
j ,4

= (1 )X
j ,4

+ g
i,4

          (9) 

  

Fig. (17). A candidate solution of a template used for human detec-
tion. 

 

Fig. (18). Time series position of people tracking. 

 Furthermore, the time counter is used for the reliability of 

human tracking. If the human tracking candidate is updated 

by the nearest human candidate position obtained by LGAC, 

the time counter is incremented. Otherwise, the time counter 

is decremented. If the time counter is larger than the prede-

fined threshold, the human count is started. The number of 

the tracked human is represented at the discrete time t. 

Sometimes, several human candidates are close each other 

(e.g., overlapping in Fig. 18), because several human candi-

dates in the detected single human can be generated and 

overlapped. Therefore, the removal processing is performed 

when human candidates are coexisting within the tracking 

range (Fig. 18). 

EXPERIMENTAL RESULTS 

 This section shows experimental results of people track-

ing of a partner robot by the proposed method where the 

maximal number of humans is 12. In the experiment, the 
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number of people is gradually increasing. Fig. (19) shows 

the snapshots in the experimental result of the original im-

age, differential extraction, human tracking results by red 

boxes, and human detection results by green boxes corre-

sponding to the best solutions in the local clusters. 

(a) 4 people 

Original Image  Differential Extraction 

 

(b) 7 people 

Human Tracking Human Detection 

 

(c) 12 people 

 

Fig. (19). Snapshots of the people tracking experimental result. 

 Fig. (20) shows the history of the number of the tracked 

people. The number of tracked people is 4 in Fig. (19a) and 

this number is correct. The number of tracked people in Fig. 

(19b) is 8, but the actual number of people is 7, because the 

hand of upper right person is misdetected as a human face. 

The number of tracked people in Fig. (19c) is 14, but the 

actual number of people is 12, because the neck of upper left 

and lower right people is misdetected as a human face. 

 Such a misdetection sometimes occurs, but we can im-

prove this problem by using human facial landmark extrac-

tion in our previous research [30]. However, since the aim of 

the partner robots is not to track all people in the human 

tracking, but to track the near people for the communication 

with them. Of course, the precise people tracking is also very 

important, but the partner robots should perform various 

functions such as voice recognition and gesture recognition 

simultaneously. Therefore, the partner robots should perform 

the human tracking with less computational time and cost. 

 

Fig. (20). History of the number of tracking people. 

CONCLUSIONS 

 In this paper, we proposed a local genetic algorithm 

based on clustering in order to improve the human tracking 

performance. The proposed method sufficiently performs the 

tracking of several people. However, the proposed method 

sometimes misdetects objects similar to skin and hair colors. 

In order to improve the performance of the human detection, 

we will incorporate an extraction method of the human facial 

landmarks into the human detection method [30]. 

 As another future work, we intend to apply the proposed 

method to the active robot vision by updating the camera 

angle and position. 
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