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Abstract

The “Necker-Zeno model”, a model for bistable perception inspired by the
quantum Zeno effect, was previously used to relate three basic time scales of
cognitive relevance to one another in a quantitative manner. In this paper,
the model predictions are compared with experimental results obtained under
discontinuous presentation of an ambiguous stimulus. In addition to earlier
results for long inter-stimulus intervals, we show that the reversal dynamics
according to the Necker-Zeno model is also in agreement with new results for
short inter-stimulus intervals. Moreover, we refine the model in such a way
that it accounts for the distribution of “dwell times” (inverse reversal rates).
Finally, we indicate applications concerning the modification of cognitive time
scales under conditions of psychopathological impairments and meditation-
induced modes of awareness.
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1. Introduction
The bistable perception of ambiguous stimuli or in binocular rivalry is well es-

tablished as an interesting arena to study phenomena of attention and perceptual
awareness and their neural basis [1–4]. Binocular rivalry and perceptual reversals of
ambiguous stimuli have several features in common. Examples are: the form of the
distribution of dwell times (inverse reversal rates) for a given stimulus [5,6], a high
inter-individual variability in reversal rates [5,7], and a sizable influence of physical
stimulus properties [8,9].

But there are also indications for differences between ambiguous stimuli and
binocular rivalry. For instance, voluntary control of subjects over reversal rates
seems to be pronounced for ambiguous stimuli [10] but quite limited for binocular
rivalry [11,12]. This has been interpreted in terms of a higher influence of bottom-up,
stimulus-driven processing for binocular rivalry as compared to ambiguous stimuli.
A good review of the current state of knowledge on binocular rivalry is due to Alais
and Blake [13].

A number of EEG studies of perceptual reversals have found ERP (event-related
potential) correlates. Basar-Eroglu et al. [14] reported a P300-like component with
perceptual reversals, which was interpreted as a correlate of cognitive processing.
Kornmeier and Bach [15] were able to detect earlier ERP components starting at 130
msec with a refined experimental design. In the frequency domain, both increased
γ-activity [16] and decreased α-activity [17] were reported to occur in the time range
of the P300 component.

In this contribution, we consider bistable perception from a theoretical perspec-
tive. Different from numerous theoretical approaches in the literature (e.g., [18–20],
and others) we do not primarily look for neural mechanisms implementing the re-
versal dynamics. Our model (first proposed in [21]) has been worked out in the
spirit of a system-theoretical framework that can be applied to cognitive states and
properties without requiring an explicit discussion of their neural correlates. (Of
course, such correlates will be a desirable further ingredient of the model if they
can be determined.) The model relates the dwell time in bistable perception, which
has been theoretically studied extensively (see, e.g., [6,22–25]), to other important
cognitive time scales.

The proposed model is called the Necker-Zeno model and will be shortly reviewed
in Sec. 2. In Sec. 3 we implement a refinement of the model that allows us to describe
the distribution of dwell times. In Sec. 4 we show that a predicted quantitative
relationship between different cognitive time scales, which was earlier confirmed
by data from [26], is also in agreement with new experimental material from [27].
In Sec. 5 we predict that particular cognitive time scales should be dramatically
changed during particular modes of awareness that are restricted or enhanced with
respect to “normal” cognition. Future experimental work to test corresponding
conjectures is proposed.



2. Necker-Zeno Model for Bistable Perception
A theoretical approach to describe the dynamics of alternating perceptive con-

figurations was recently proposed in terms of the so-called Necker-Zeno model [21].
This model is inspired by the Zeno effect for unstable quantum states [28] and de-
scribes the perceptual instability of ambiguous stimuli in a formal fashion. In con-
trast to attempts to apply standard quantum physics to brain functioning and con-
sciousness directly, the Necker-Zeno model is based on a generalized formal frame-
work, particularly suited for applications beyond physics [29]. Earlier suggestions to
use Zeno-type arguments for cognitive systems are due to [30,31].

A key assumption of the Necker-Zeno model is that the cognitive state corre-
sponding to a perceived stimulus is updated at intervals ∆T (of the order of 30 msec
to 70 msec, see below). The probability that no reversal occurs within a duration T
between two successive updates is then given by:

w(T ) = cos2(gT ) with g =
π

4t0
, (1)

where t0 characterizes the period of the reversal dynamics assuming no updates (of
the order of 300 msec, see below). The inverse of t0, g, determines how fast the
cognitive state corresponding to a perceived stimulus decays.

Let {τi}i=0,...,N be the instants at which an update of the cognitive state has
been performed, and let w(τN , τN−1, ..., τ1, τ0 = 0) be the joint probability that no
perceptual reversal has occured from τ0 up to τN = T . Then

W (T ) := w(τN , τN−1, ..., τ1) =
N∏

i=1

cos2(g(τi − τi−1)) =
N∏

i=1

cos2(g∆T (i)) ,

with
∆T (i) = τi − τi−1 .

For the Necker-Zeno model we have ∆T (i) � t0, so we may expand the cosine
up to the quadratic term:

W (T ) ≈
N∏

i=1

e2 ln(1− 1
2
g2(∆Ti)

2) ≈ e−g2
∑N

i=1(∆Ti)
2

.

Assuming a constant updating interval ∆T (i) = ∆T , we obtain

W (T ) = e−g2N(∆T )2 ,

which means for T = N∆T :

W (T ) = e−g2∆T ·T . (2)

W (T ) is the probability that no reversal has occurred up to time T . Hence,
1−W (T ) describes the integrated (cumulative) distribution of “dwell times” (inverse



reversal rates). It yields the following probability distribution (density) for dwell
times:

P (T ) = −dW (T )

dT
= γe−γT , (3)

where γ = g2∆T . The mean dwell time 〈T 〉 is given by:

〈T 〉 =
1

γ
=

(
16

π2

)
t20

∆T
, (4)

leading to the relation
∆T · 〈T 〉 = Ct20 , (5)

where C is of the order of 1 such that t0 is basically the geometric mean of 〈T 〉 and
∆T .

In this way, the Necker-Zeno model predicts a quantitative relationship between
three time scales which can be interpreted in terms of cognitive time scales (for more
details see [21]):
(i) The time between successive information updates of the cognitive state is related
to the so-called sequential order threshold of ∆T ≈ 30 msec [32]. In the original
quantum Zeno effect ∆T is the time between successive observations.
(ii) The decay time for a sensory input to become consciously accessible (cognitively
processed) is of the order of t0 ≈ 300 msec [14]. In the original quantum Zeno
effect t0 is the oscillation period between the two unstable states without updates,
a situation which is of more or less hypothetical character in cognition.
(iii) The observed mean dwell time 〈T 〉 between successive reversals of competing
configurations of an ambiguous stimulus is usually of the order of 3 sec [32].

These cognitive time scales obviously satisfy Eq. (5). More detailed empirical
tests of Eq. (5) are possible if one of the time scales can be measured as a function of
another one, which is experimentally controllable, while the third one is considered
fixed. We come back to this option in Sec. 4.

3. Distribution of Dwell Times
The Necker-Zeno model as introduced in the preceding section predicts an ex-

ponential decrease for W (T ) according to Eq. (2) and, hence, a Poisson distribution
for P (T ) according to Eq. (3). Early observations [5] revealed, however, that the
dwell time distribution resembles a gamma distribution of the form

P (T ) ∝ T b e−γT .

In order to reproduce this observed behavior of the dwell time distribution, we may
refine the Necker-Zeno model with b = 0 (cf. Eq. (3)) in one of two possible ways.
We can assume that either the decay parameter g or the updating interval ∆T is
non-constant during an initial (transient) phase of the process. Indications for such



an initial phase were earlier reported [33,34] with increased dwell times during the
initial stage of stimulus observation.

3.1. Non-Constant Decay g

Suppose that the parameter g depends on the number of previous updates. We
set

g(i) = g · f(i) ,

where f(i) is a function which starts from 0 and approaches 1 for large i. Now we
consider f to be of the form

f(i) = tanh

(
i

α

)
,

where α determines the number of updates Nc within the transient period during
which g(i) increases up to its asymptotic value. As f(i) grows approximately linearly
for small values of i, we determine α from the condition that the argument of the
tanh is one:

Nc

α
= 1 .

The relation between (ordinary) time T and the number of updates N is linear,

T = T (N) = N∆T ,

and leads to the condition:

α =
Tc

∆T
.

Tc is the time after which f(i) has roughly approached its asymptotic value.

3.2. Non-Constant Updating ∆T

As an alternative to an initial increase of g (Sec. 3.1), we now leave g time-
independent and suppose that the updating interval ∆T is not constant:

∆T (i) = τi − τi−1 = ∆T · f(i) ,

where f(i) is defined as above. Again we posit the condition

Nc

α
= 1 ,

but now the relation between the number N of updates and time T is more compli-
cated:

T = T (N) =
N∑

i=1

∆T (i) = ∆T
N∑

i=1

f(i) .



For the determination of α we take f(i) to be approximately linear for i < Nc

and obtain an approximate relation between Nc and Tc, now understood as the time
after which ∆T has approached its asymptotic value:

∆T
Nc∑
i=1

(
i

α

)
= ∆T

Nc(Nc − 1)

2α
= Tc .

From this follows for α = Nc (the same condition as in Sec. 3.1):

(α − 1)

2
=

Tc

∆T

or, roughly,

α =
2Tc

∆T
.

This result differs from the result for constant ∆T by a factor of 2.

3.3. Comparison

We now compare the behavior of the dwell time distribution for the two cases
described in Secs. 3.1 and 3.2. In both cases, we obtain for the integrated dwell time
distribution introduced in Sec. 2:

w(τN , τN−1, ..., 1) =
N∏

i=1

cos2(gf(i)∆T ) ≈ e−g2(∆T )2
∑

i f(i)2 ,

with τi = ∆T
∑i

j=1 f(j). So we find

W (T ) = exp

(
−g2(∆T )2

N∑
i=1

f(i)2

)
, (6)

where T as a function of the number N of updates is given by

T (N) = ∆T · N for non-constant g ,

T (N) = ∆T
N∑

i=1

f(i) for non-constant ∆T .

Strictly speaking, these relations have to be solved for N in order to obtain N(T )
which then yields W (T ) = W (N(T )).

Approximating sums by integrals, we have:

W (T ) = exp

(
−g2(∆T )2

∫ N

0

f(x)2dx

)



with

T (N) = ∆T · N for non-constant g ,

T (N) = ∆T

∫ N

0

f(x)dx for non-constant ∆T . (7)

P (T ) is obtained by taking the derivative with respect to T (cf. Eq. (3)):

P (T ) = −dW (T )

dT
= −dW (N)

dN
· dN

dT
.

While the first factor in P (T ),

dW (N)

dN
= −g2(∆T )2f(T )2 exp

(
−g2(∆T )2

∫ N

0

f(x)2dx

)
,

is the same in both cases, we find for the inverse of the second factor in P (T ):

dT (N)

dN
= ∆T for non-constant g ,
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Figure 1: Distribution P (T ) according to Eqs. (8,9), where the initial behavior of the
reversal dynamics is implemented (a) due to an increasing update interval ∆T (squares)
and, alternatively, (b) due to an increasing decay parameter g (crosses). Parameters are
t0 = 300 msec and ∆T = 70 msec (reached after about one second in case (a)).
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Figure 2: Distribution P (T ) for t0 = 300 msec according to (a) gamma distributions
(solid lines) with b = 2 for ∆T = 70 msec (highest maximum) and ∆T = 30 msec; (b)
according to Eq. (8) for non-constant g, and with ∆T = 70 msec (crosses) and ∆T = 30
msec (squares). Gamma distributions decay considerably faster for larger T .

dT (N)

dN
= ∆Tf(T ) for non-constant ∆T .

So we obtain:

P (T ) = g2(∆T )f(T )2 exp

(
−g2(∆T )2

∫ N

0

f(x)2dx

)
for non-constant g (8)

P (T ) = g2(∆T )f(T ) exp

(
−g2(∆T )2

∫ N

0

f(x)2dx

)
for non-constant ∆T .(9)

One difference between these two expressions, which hold for any monotonic function
f(T ), derives from the fact that time T as a function of N has to be obtained
according to different prescriptions (see Eq. (7)). But the main difference is that
for non-constant g, P (T ) is proportional to f(T )2, while for non-constant ∆T it is
proportional to f(T ). Depending on the power-law behavior of f(T ) as a function
of small T , this leads to a different behavior in P (T ).

In Figure 1, the two distributions according to Eqs. (8,9) for ∆T = 70 msec,
t0 = 300 msec, and Tc = 1.05 sec are compared. The figure shows that the increase



of P (T ) for small T is steeper for non-constant ∆T . Already the early observations
of dwell times by Borsellino et al. [5] (similarly [24]) indicate that P (T ) follows a
high power of T for small T , and that 〈T 〉 is approximately twice as large as the
standard deviation of P (T ).

In principle, good fits to experimental dwell times can be obtained for both
Eq. (8) and (9), depending on the choice of f(T ). However, assuming an intuitively
plausible low power for f(T ), for instance tanh(T ), suggests that the slower increase
of P (T ) due to a non-constant g fits the experimentally obtained results better.
(The mentioned observations by Price [34] also support an initial variability of g
rather than ∆T .) Moreover, the ratio of 〈T 〉 and the standard deviation of P (T )
in Figure 1 is closer to the experimentally found result of 2 for non-constant g.
Therefore, Figure 2 shows a comparison of gamma distributions with distributions
according to Eq. (8) (time-dependent g) for ∆T = 70 msec and ∆T = 30 msec.

It is tempting to speculate about a cognitive interpretation of the time-dependence
of g or ∆T . In a vague sense, which needs to be made more precise, one might argue
that an initially focused and subsequently decreasing attention could be an inter-
esting candidate. This would mean that increased attention can both accelerate the
updating of a given cognitive state and decelerate the decay out of this state. Our
model favors the second option, but in order to confirm that this has in fact to do
with attention, additional independent pieces of evidence would be necessary.

For instance, one might speculate that recent evidence [11,12] for voluntary con-
trol over dwell times in the perception of ambiguous figures – as opposed to binocular
rivalry – would imply a significant contribution of top-down processing – as opposed
to bottom-up processing. The times scales involved should thus be longer for bista-
bility in ambiguous perception. Moreover, it was found that dwell times increase if
attention is distracted [35] and that dwell times are reduced by increasing vigilance
[36]. Further experimental investigations of the relation between volitional attention
or vigilance and dwell times are in progress.

4. Cognitive Time Scales under
Discontinuous Stimulus Presentation

Research on perceptual reversals of ambiguous stimuli started with continuous
stimulus presentation, but Orbach et al. [37,38] proposed discontinuous presentation
as an important alternative as early as in the 1960s. In this presentation mode, the
stimulus is interrupted by inter-stimulus intervals (or off-times) toff . Variation of toff

was shown to have a significant influence on dwell times 〈T 〉. Their results were later
reproduced [26,27,39–41]. Smallest dwell times 〈T 〉 (highest reversal rates) occur for
toff of the order of t0 ≈ 300 msec. For toff ≤ t0, 〈T 〉 increases to the value observed
under continuous presentation [27,37,38], and for toff ≥ t0, 〈T 〉 can increase as much
as providing a reversal rate of close to zero [39,40].



4.1. toff ≥ 300 msec

In the experiments presented in [26], the stimulus was a Necker lattice, consisting
of 3 by 3 Necker cubes. The stimuli were presented to 10 subjects on a computer
screen with on-and off-times of 50, 100, 400, 700, and 1000 msec. For each block
of 60 seconds, another combination of ton and toff was chosen. Between blocks, a
blank screen was shown for 30 seconds. Subjects indicated a perceptual reversal by
pressing a button.

In agreement with earlier observations, it was found [26] that 〈T 〉 is more or less
independent of ton. The significant dependence of 〈T 〉 on toff , on the other hand, can
be compared with the prediction of the Necker-Zeno model. In this model, it can
be argued that the off-times toff in discontinuous presentation represent a “forced”
decay time t0 as long as toff ≥ 300 msec (for details see [21]).

Under this assumption, the Necker-Zeno model has been experimentally con-
firmed with data from [26,38]. Figure 3 (reproduced from [21]) shows mean dwell
times 〈T 〉 as a quadratic function of toff ≈ t0 as predicted by Eq. (5). In addition
to and independent of the quadratic dependence that the model predicts, the best
polynomial fit to the data is also quadratic and yields ∆T ≈ 70 msec. (We found
that linear and cubic fits have a variance by a factor of 2.7 and 3.7 higher than the
variance of the quadratic fit.)

Note that the lowest off-time toff = 200 msec in Figure 3 has the largest relative
deviation from the predicted curve. In the subsequent subsection we will show that
this is consistent with our model for off-times toff ≤ 300 msec, where 〈T 〉 changes
its functional dependence on toff qualitatively and increases with decreasing toff .

4.2. toff ≤ 300 msec

For off-times smaller than 300 msec, toff can no longer be used to mimic t0 but still
has an influence on 〈T 〉. In order to investigate this influence, we analyzed data from
[27] in which the Necker lattice was presented to 12 subjects. The presentation time
was constant at 800 msec ± a randomly varied addition between 0 and 100 msec (see
below), and toff was randomly chosen among 14, 43, 130, and 390 msec, where the last
value served to identify the transition to long inter-stimulus intervals. All off-times
occurred equally often. The randomized sequence of off-times avoided habituation
effects due to identical successive off-times. Subjects indicated a perceptual reversal
by pressing a button. If a reversal was reported, the subsequent off-time was set to
1000 msec, and the observation sequence was restarted.

Since the off-times were varied randomly over time, it is not appropriate to
consider reversal rates relative to observation time. Instead, the number of reversals
following each off-time was counted and related to the total number of occurrences
of the corresponding off-time. The dependence of 〈T 〉 on toff for short off-times as
observed in [37,38] was essentially reproduced by the results of [27]. We now show
that, in addition to describing the behavior of dwell times for long off-times, the
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Figure 3: Experimentally obtained mean dwell times 〈T 〉 (inverse reversal rates) for the
bistable perception of a discontinuously presented Necker cube. Crosses mark results from
[15]; for each off-time, 〈T 〉 (including standard errors) is plotted for three on-times of 0.05
sec, 0.1 sec, and 0.4 sec. Squares mark results from [38] for an on-time of 0.3 sec (no errors
indicated in [38]). The plotted curve shows 〈T 〉 as a function of off-times toff according to
Eq. (5) with ∆T ≈ 70 msec. (Reproduced from [21] with permission, c© Springer-Verlag,
Heidelberg.)

Necker-Zeno model is also capable of describing reversal rates as a function of small
off-times.

First, we calculated W (T ) according to Eq. (6) with T = ∆T ·N (the case where g
is time-dependent) for f(T ) = tanh(T ) and for on-times T on

n = (700+n 100/7) msec
(n = 0, ..., 14). (100/7 ≈ 14 msec corresponds to the duration of one image on a
screen operating with a frequency of 70 Hz.) This corresponds to the on-times chosen
in [27] of 800 msec ± a randomly chosen time-interval between 0 and 100 msec.

Second, we multiplied the averaged on-time probability with woff(T ) according to
Eq. (1) for off-times T off

k = k 100/7 msec for the values k = 1, 3, 9. This corresponds
to Kornmeier et al.’s (2007) choices of T off

k = 14, 43, 130 msec. T off
k = 390 msec is

outside the scope of small off-times. The mean dwell time of 2.7 sec, corresponding
to the reversal rate of 0.36/sec shown in Figure 4, is in excellent agreement with
the observations for large off-times in Figure 3. Note that Eq. (5) remains valid
whenever 〈T 〉 
 t0. The increase of 〈T 〉 for decreasing toff < 300 msec is due to the
fact that in this regime t0 is not approximated by toff .

The results for small off-times are the three probabilities

wk = W (T = 800 ± n 100/7) woff(Tk) ,
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Figure 4: Reversal rates versus off-times toff : (a) Experimental observations from [27],
with standard error of the mean for the corresponding population; (b) best fit of (1−wk) to
those experimental data according to the Necker-Zeno model (asterisks), yielding ∆T ≈ 16
msec, t0 ≈ 210 msec, and Tc ≈ 63 msec; (c) results (squares) for assumed parameters
∆T = 30 msec and t0 = 300 msec. Values for (b) are calculated under the condition of an
initially increasing g. The reversal rate for toff = 390 msec is disregarded in the fit since it
is outside the scope of small off-times.

where W (T ) is a mean value over n = 0, ..., 14. The probabilities (1−wk) represent
reversal rates and are plotted in Figure 4 for two different sets of parameters ∆T ,
t0 and Tc.

• Asterisks in Figure 4 show reversal rates wk for ∆T = 16 msec, Tc = 63 msec,
and t0 = 209.4 msec, obtained from a least-squares fit of the reversal rates
according to the Necker-Zeno model with the reversal rates observed in [27].
Note, however, that we cannot determine ∆T and Tc separately, because they
appear in combined form in W (T ). Table 1 shows combinations of ∆T and
Tc within a range of 0.025% of the variance of the best fit providing t0 = 209.4
msec. All combinations listed in Table 1 are consistent with the measured
dwell times.

• Squares in Figure 4 show reversal rates wk for ∆T = 30 msec, t0 = 300 msec
and Tc = 0, the parameters of the original Necker-Zeno model reviewed in
Sec. 2. The deviating reversal rate for toff = 130 msec suggests that slightly
smaller values of t0 and/or ∆T might be more appropriate.



∆T 14.5 16 18 20 22 26.5 37 38 41.5 43.5 45.5 47.5 51 54.5 59.5
Tc 0 63 146 209 261 355 512 523 564 585 606 627 658 690 732

Table 1: Combinations of ∆T and Tc (both in msec) for t0 = 209.4 msec, obtained by
least-squares fits with a variance within 0.025% of the best fit. Obviously the quality of
the fit hardly depends on the pairs of values listed.

5. Ideas for Future Work
Equation (5) predicts that, if t0 is supposed to remain fixed, an increase of 〈T 〉

implies a decrease of ∆T (and vice versa). This prediction is at variance with
another, hierarchically conceived proposal regarding 〈T 〉 as integrating a particular
number of elementary update intervals so that 〈T 〉 is a multiple of ∆T [32]. Since 〈T 〉
shows considerable interindividual variations, it is in principle possible to distinguish
between the two approaches on an empirical basis: Measuring ∆T as a function of
〈T 〉 for subjects with sufficiently different 〈T 〉 should yield accordingly different
values of ∆T .

Much empirical material relevant in this context was collected in [42], with a
special emphasis on clinical implications of temporal perception on the time scales
mentioned above. Unfortunately, they did not report covariations of different time
scales for the same individuals, so Eq. (5) cannot be tested using their published
data.

Among other results, it was found [42] that ∆T is significantly increased in pa-
tients with posterior left-hemispheric lesions with fluent aphasic syndromes. In these
patients, and in children suffering from language-learning impairments or dyslexia,
behaviorally-oriented training was shown to reduce ∆T down to the normal range
so that the ability to resolve rapidly presented stimuli was (partly) regained.

It is plausible that the size of the sequential order threshold ∆T can be regarded
as an elementary update interval characterizing the temporal resolution of perceptual
awareness. This resolution can possibly be further increased by particular techniques
among which meditative practice may play a role. In the frequency domain, specific
features of γ-activity have been reported [43,44] in particular meditative states and
interpreted these results in terms of different modes of awareness.

In the time domain, recent observations [45] on experienced meditators are emi-
nently interesting since the reported increase of 〈T 〉 exceeds two orders of magnitude
during specific kinds of meditation. This has to be compared with a much smaller
factor of up to five for interindividual variations as they are commonly known. For
meditators, it should therefore be possible to detect the relationship between 〈T 〉
and ∆T with evidentiary significance if both time scales are co-determined.

According to the Necker-Zeno model (Eq. (5)), an enormously increased mean
dwell time 〈T 〉 is accompanied either by a corresponding decrease of ∆T or by an
increase of t0 (or by a combination of both). This would imply either an extraordi-
nary enhancement of the time resolution of perceptual awareness, based on a very



rapid update of processed information, or a drastically delayed decay of the cognitive
state in reaction to a perceived stimulus. The relative impact of the time scales ∆T
and t0 can be tested with existing experimental designs, combining measurements of
sequential order thresholds, of decay times of the cognitive state, and of dwell times
of bistable stimuli. In addition, it would be interesting to study how discontinuous
stimulus presentation modulates dwell times during meditation.

6. Summary
A quantitative model called Necker-Zeno model, developed in [21] for the de-

scription of the reversal dynamics in the perception of bistable stimuli, has been
refined and extended to fit additional empirical results not considered so far. In
particular, we focused (i) on the distribution P (T ) of dwell times T or, respectively,
reversal rates and (ii) on the behavior of mean dwell times 〈T 〉 under discontinuous
presentation of the stimulus. It turned out that the Necker-Zeno model is in good
agreement with the analyzed experimental data.

With respect to the distribution P (T ), we refined the model by accounting for
an initial (transient) phase of the dynamics which is highly plausible. This can be
achieved in two formally different ways that lead to different forms of P (T ). Recent
results [24] suggest a criterion to distinguish one of them as more appropriate on
an empirical basis. We may speculate that some kind of attention relaxation is
a significant factor for a cognitive interpretation of the competing kinds of initial
behavior.

With respect to the mean dwell times 〈T 〉 under discontinuous stimulus presen-
tation, we extended the model by accounting for short presentation off-times. In
addition to the correct prediction of an increasing 〈T 〉 for increasingly long off-times
reported earlier [21], the Necker-Zeno model does also correctly describe an increase
of 〈T 〉 for decreasingly short off-times recently reported in [27]. These results are
non-trivial since they represent opposing trends for long and short off-times, sepa-
rated by a critical time scale of the order of 300 msec.

Finally, we indicate some ideas and options for further empirical tests of the
Necker-Zeno model. They are essentially based on the fact that the model predicts
a fairly simple quantitative relation (Eq. (5)) between three significant cognitive
time scales that are often discussed to be of the order of approximately 30, 300, and
3000 milliseconds. Recent observations [45] suggest that they can be dramatically
changed under specific conditions.
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