
Computed Enapsulation Energetis for MetallofullerenesZden�ek Slanina,�;�� Filip Uhl��k��� and Shigeru Nagase����Department of Theoretial and Computational Moleular Siene, Institute for Moleular Siene, Myodaiji, Okazaki444-8585, Aihi, Japan���Shool of Siene, Charles University, 128 43 Prague 2, Czeh RepubliAbstrat: Some alkali and alkaline-earth metals an be now enapsulated in fullerenes. For example, Li�C60 andLi�C70 an be produed by the low-energy bombardment method while Ca�C74, Sr�C74, and Ba�C74 an beprepared by high-temperature syntheses. Hene, their omputations at higher levels of theory are also of interest.In the report, the omputations are arried out on Li�C60, Li2�C60 and Li3�C60 with the B3LYP and MPWB1Kdensity-funtional theory (DFT) treatment in the standard 3-21G and 6-31G* basis sets. The omputed energetissuggests that Lix�C60 speies ould be produed for several small x values if the Li pressure is enhaned suÆiently.The B3LYP DFT approah is also applied to Mg�C74, Ca�C74, Sr�C74, and Ba�C74 and prodution populationsare thus rationalized.Keywords: Endohedral fullerenes; arbon-based nanotehnology; moleular modeling; moleular eletroni struture;metallofullerene stabilities.INTRODUCTIONThere has been a renewed interest [1-22℄ in systems ontaining alkali metals and fullerenes, in partiular Li�C60 andLi�C70 produed by low energy ion implantation [11,13,14℄ in bulk amounts. Reently, suh systems have also beensubjeted to more advaned omputations [19-22℄, espeially in the studies by Gurin [19,20℄. The vibrational spe-tra were obtained [13,14℄ for Li�C60 and Li�C70. Li2�C60 was also evidened in observations [11℄ though in a smallamount ompared to Li�C60. In addition to alkali metals, even alkaline-earth metals an be enapsulated into fullereneages and atually a whole reation series Ca�C74, Sr�C74, and Ba�C74 is now available from high-temperature teh-niques [23-25℄. The observations moreover suggest a qualitative information on their relative populations. The reentexperimental progress makes omputations of the speies even more interesting and, in partiular, some theoretialrationalization of the observed relative stabilities would be useful. In the report, the omputations are arried out onLi�C60, Li2�C60, and Li3�C60, and also on Mg�C74, Ca�C74, Sr�C74, and Ba�C74, using the density-funtionaltheory (DFT) treatments. The report supplies illustrative examples what kind of information an be obtained fromalulations for suh metallofullerene systems. Both potential energy and Gibbs free energy terms are evaluated. Thestudy for the �rst time allows for omputational rationalization of the observed relative populations for metallofullerenereation series.COMPUTATIONSThe geometry optimizations were arried out with Beke's three parameter funtional [27℄ with the non-loalLee-Yang-Parr orrelation funtional [28℄ (B3LYP) in the standard 3-21G basis set (B3LYP/3-21G). The geometryoptimizations were arried out with the analytially onstruted energy gradient as implemented in the Gaussianprogram pakage [29℄. Although the 3-21G basis set is a small basis, its appliation has been ustomary for fullerenegeometries owing to the omputational demands (though a hek with larger basis sets would in future be useful).In the optimized B3LYP/3-21G geometries, the harmoni vibrational analysis was arried out with the ana-lytial fore-onstant matrix. In the same optimized geometries, higher-level single-point energy alulations werealso performed, using the standard 6-31G* basis set, i.e., the B3LYP/6-31G* level (or, more preisely, B3LYP/6-31G*//B3LYP/3-21G). As Li�C60 and Li3�C60 are radials, their omputations were arried out using the unre-strited B3LYP treatment for open shell systems (UB3LYP). The ultra�ne integration grid was used for the DFTnumerial integrations throughout.Reently, Zhao and Truhlar [30-35℄ performed a series of test DFT alulations with a onlusion [35℄ that theMPWB1K funtional (the modi�ed Perdew and Wang exhange funtional MPW [36℄ and Beke's meta orrelationfuntional [37℄ optimized against a kinetis database) is the best ombination for evaluations of nonbonded interationswith a relative averaged mean unsigned error of only 11%. The MPWB1K funtional is also applied in this report.RESULTS AND DISCUSSIONOne atom-type stepwise enapsulations: Lix�C60The UB3LYP approah is preferred here over the restrited open-shell treatment (ROB3LYP) as the latter atually�The orresponding author - e-mail: zdenek�ims.a.jp
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Fig. 1. B3LYP/3-21G optimized strutures of Lix�C60 (the Li atoms are darkened).exhibits a slow SCF onvergeny for the present systems (and ROB3LYP analytial frequenies are not implementedin the Gaussian program pakage [29℄). Although the unrestrited Hartree-Fok (UHF) approah an be faster, it analso be inuened by the so alled spin ontamination [38℄ and indeed, this fator was an issue in our previous [15℄UHF SCF alulations as the UHF/3-21G spin ontamination turned out to be higher than reommended threshold[38℄ in the expetation value for the < S2 > term where S stands for the total spin. As long as the deviations fromthe theoretial value are smaller than 10%, the unrestrited results have traditionally been onsidered [38℄ appliable.This requirement is well satis�ed for the Li�C60 and Li3�C60 speies - for example, at the B3LYP/3-21G level theexpetation value is 0.7552 and 0.7546 for Li�C60 and Li3�C60, respetively, i.e., loser less than 1% to the theoretialvalue. Fig. 1 shows the omputed strutures of Li�C60, Li2�C60, and Li3�C60. In all the three ases the Li atomsin the optimized strutures are shifted from the age enter towards its wall. In partiular, in the Li�C60 speiesthe shortest omputed Li-C distane is 2.26 �A while in a entral loation (whih is a saddle point) the shortest Li-Cdistane at the UB3LYP/3-21G level is 3.49 �A. As for the energetis of the entri and o�-entri loation, the saddlepoint is plaed by some 9.9 kal/mol higher at the UB3LYP/3-21G level. However, the energy separation is furtherinreased in the UB3LYP/6-31G*//UB3LYP/3-21G treatment, namely to 15.0 kal/mol.In the Li2�C60 ase, the shortest Li-C distane is even bit shorter, 2.14 �A. On the other hand, the Li-Li separationis omputed as 3.29 �A, i.e., substantially longer than the observed value in the free Li2 moleule (2.67 �A, f. refs.[39-41℄). In the third speies, Li3�C60, the shortest omputed Li-C ontat is even further redued to 2.05 �A. TheLi-Li distanes in the enapsulated Li3 luster are not equal - they are omputed as 2.70, 2.76 and 2.84 �A. Inidentally,while the observed Li-Li distane for free Li2 is [39-41℄ 2.67 �A, the B3LYP/3-21G omputed value is 2.725 �A (it hangesto 2.723 �A at the B3LYP/6-31G* level). Similarly, also the observed values for the free Li3 luster are available [42,43℄,atually for two triangular forms - opened (2.73, 2.73, 3.21 �A) and losed (3.05, 3.05, 2.58 �A). The UB3LYP/3-21Gomputed distanes in the free Li3 opened luster are 2.78, 2.78, and 3.30 �A. Hene, there is a good theory-experimentagreement. The formal Mulliken harge (the largest value) found on the Li atoms is somewhat dereasing in theLi�C60, Li2�C60, and Li3�C60 series with the UB3LYP/3-21G values of 1.16, 1.10, and 0.86, respetively. Still, thetotal harge transferred to the age is inreasing in the series: 1.16, 2.21, and 2.46 (the harges are redued in the6-31G* basis).The vibrational analysis enables to test if a true loal energy minimum was found. All the omputed frequeniesfor the strutures in Fig. 1 are indeed real and none imaginary (though we ould also loate some saddle pointsnot disussed here). Moreover, the vibrational frequenies are primarily used here (together with other omputedmoleular parameters) for the entropy and thus Gibbs free-energy evaluations. Hene, the spetrosopi aspets arenot of partiular interest in our onnetions, however, let us mention relationships to some observed values. The lowestomputed vibrational frequenies are mostly represented by motions of the Li atoms. Obviously, owing to symmetryredutions upon enapsulation, the symmetry seletion rules do not operate any more in the way they simplify theC60 vibrational spetra [44℄. Hene, the vibrational spetra of Lix�C60 must be onsiderably more omplex than forthe iosahedral (empty) C60 age with just four bands in its IR spetrum [44℄. This inreased spetral omplexityhas indeed been observed [13,14℄. Inidentally, the observed harmoni frequeny [39-41℄ for free Li2 is 351 m�1 whilethe omputed B3LYP/3-21G term is 349 m�1 (and the B3LYP/6-31G* value 342 m�1). For the endohedrals, alarger-basis frequeny alulations are not yet ommon, at least not throuhout a larger reation series, though a hekat a more advaned level would be interesting.Di�erent atom-type enapsulations: X�C74There is a general stability problem related to fullerenes and metallofullerenes - either the absolute stability of thespeies or the relative stabilities of lusters with di�erent stoihiometries. One an onsider an overall stoihiometryof a metallofullerene formation: xY(g) + Cn(g) = Yx�Cn(g): (1)
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Table 1. Computed enapsulation potential-energy hanges �EYx�Cn (kal/mol) for Lix�C60Speies �EYx�Cn �EYx�Cnx aB3LYPbLi�C60 -28.4 -28.4Li2�C60 -51.1 -25.6Li3�C60 -71.0 -23.7MPWB1KLi�C60 -34.9 -34.9Li2�C60 -62.8 -31.4Li3�C60 -101.0 -33.7aThe relative term related to one Li atom. bComputed at the B3LYP/6-31G*//B3LYP/3-21G level. Computed atthe MPWB1K/6-31G*//MPWB1K/3-21G level.The enapsulation proess is thermodynamially haraterized by the standard hanges of, for example, enthalpy�HoYx�Cn or the Gibbs energy �GoYx�Cn . In a �rst approximation, we an just onsider the enapsulation potential-energy hanges �EYx�Cn (i.e., the di�erenes in the total eletroni energy between reatants and produts). Table1 presents the terms for Lix�C60. Their absolute values inrease with the inreasing number of the enapsulated Liatoms. In order to have some diretly omparable relative terms, it is onvenient to onsider the redued �EYx�Cnxterms related to one Li atom. Although the absolute values of the redued term derease with inreasing Li ontent,the derease is not partiularly fast (so that, a further inrease of the enapsulated Li atoms ould still be possible).The MPWB1K terms are somewhat more pronouned and there is even a di�erent trend for Li3�C60 omparedto B3LYP (as shown by Zhao and Truhlar [30-35℄, B3LYP is however not partiularly reliable for suh situations).The omputational �ndings help to rationalize why also the Li2�C60 speies ould be observed [11℄. The basis setsuperposition error (BSSE) is not estimated for the presented values (a straightforward appliation of the Boys-Bernardi ounterpoise method would be rather questionable in this situation, partly owing to a substantial agedeformation upon the enapsulation). However, the BSSE terms ould be to some extent additive and thus, theyshould somewhat anel out in a reation series. Interestingly enough, the stabilization of metallofullerenes is mostlyeletrostati as doumented [45,46℄ using the topologial onept of 'atoms in moleules' (AIM) [47,48℄ whih showsthat the metal-age interations form ioni (and not ovalent) bonds.The problem of the relative stabilities of lusters with di�erent stoihiometries an also be onsidered in a serieswith variable metal, like Mg�C74, Ca�C74, Sr�C74, and Ba�C74. Let us onsider an overall stoihiometry of ametallofullerene formation: X(g) + Cn(g) = X�Cn(g): (2)The enapsulation proess is thermodynamially haraterized by the standard hanges of, for example, enthalpy�HoX�Cn or the Gibbs energy �GoX�Cn . The equilibrium omposition of the reation mixture is ontrolled by theenapsulation equilibrium onstants KX�Cn;p: KX�Cn;p = pX�CnpXpCn ; (3)expressed in the terms of partial pressures of the omponents. The enapsulation equilibrium onstant is interrelatedwith the the standard enapsulation Gibbs energy hange:�GoX�Cn = �RTlnKX�Cn;p: (4)Temperature dependeny of the enapsulation equilibrium onstant KX�Cn;p is then desribed by the van't Ho�equation: dlnKX�Cn;pdT = �HoX�CnRT 2 (5)where the �HoX�Cn term is typially negative (as shown by available omputations and also as expeted in order toget a signi�ant stabilization) so that the enapsulation equilibrium onstants derease with inreasing temperature.Let us further suppose that the metal pressure pX is atually lose to the respetive saturated pressure pX;sat.While the saturated pressures pX;sat for various metals are known from observations [49℄, the partial pressure of Cn is
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Table 2. The produts of the enapsulation equilibrium onstanta KX�Cn;p with the metal saturated-vapor pressurebpX;sat for Mg�C74, Ca�C74, Sr�C74, and Ba�C74 omputed for illustrative temperatures T = 1500 and 2000 KEndohedral KX�C74;p pX;sat pX;satKX�C74;p pX;satKX�C74;ppBa;satKBa�C74;p(atm�1) (atm)T = 1500 KMg�C74 5.78x10�8 2.53 1.46x10�7 4.2x10�9Ca�C74 0.00919 0.162 0.00149 4.3�10�5Sr�C74 0.518 0.355 0.184 5.3�10�3Ba�C74 1332.6 0.0261 34.82 1.00T = 2000 KMg�C74 2.01x10�7 16.6 3.34x10�6 6.1x10�7Ca�C74 0.00144 3.773 0.00542 9.9�10�4Sr�C74 0.02694 6.124 0.1650 0.030Ba�C74 10.399 0.528 5.489 1.00a The potential-energy hange evaluated at the B3LYP/6-31G��dz level and the entropy part at the B3LYP/3-21G�dzlevel; the standard state - ideal gas phase at 101325 Pa pressure.b Extrated from available observed data [49℄.less lear as it is obviously inuened by a larger set of proesses (though, pCn should exhibit a temperature maximumand then vanish). However, at present there is no observed information available on the Cn values. Therefore, weavoid the latter pressures in our onsiderations - in fat, they anel out anyhow within a reation series whih is ourase here. As already mentioned, the omputed equilibrium onstants KX�Cn;p have to show a temperature dereasewith respet to the van't Ho� equation (5). However, if we onsider the ombined pX;satKX�Cn;p term:pX�Cn � pX;satKX�Cn;p; (6)that diretly ontrols the partial pressures of various X�Cn enapsulates in an endohedral series (based on one ommonCn fullerene), we get a di�erent piture. The onsidered pX;satKX�Cn;p term an frequently (though not neessarily)be inreasing with temperature so that a temperature enhanement of metallofullerene formation in the eletri-artehnique is still possible. An optimal prodution temperature ould be evaluated in a more omplex model that alsoinludes temperature development of the empty-fullerene partial pressure.If we however want to evaluate prodution abundanes in a series of metallofullerenes like Mg�C74, Ca�C74,Sr�C74 and Ba�C74, just the produt pX;satKX�C74;p terms an straightforwardly be used. The metal atoms areomputed here in a dz basis set [50℄ with the e�etive ore potential (ECP) so that the geometry optimizations arearried out at the B3LYP/3-21G�dz level and the energetis then evaluated at the B3LYP/6-31G*�dz level. It is aommon pratie to ompute entropy at a lower level and the related energetis at a higher level of theory as entropydoes not hange onsiderably with a basis-set extension. The results in Table 2 show several interesting features.While for Mg�C74 and Ca�C74 the pX;satKX�C74;p quotient inreases with temperature, it is about onstant forSr�C74 for the onsidered temperatures, and it dereases with temperature for Ba�C74. This behavior results from aompetition between the dereasing enapsulation equilibrium onstants and inreasing saturated metal pressures. Asthe enapsulation enthalpy �HoX�Cn has the most negative value for Ba�C74, its enapsulation equilibrium onstanthas to exhibit the fastest temperature derease that already annot be overompensated by the temperature inreaseof the saturated metal pressure so that the pX;satKX�C74;p quotient dereases with temperature in this ase. In orderto allow for anellation of various fators introdued by the omputational approximations involved, it is better todeal with the relative quotient pX;satKX�C74;ppBa;satKBa�C74;p . Table 2 shows that the prodution yield of Sr�C74 should be bytwo or three orders of magnitude smaller than that for Ba�C74. For Ca�C74 the prodution yield for the onsideredtemperatures is omputed to be between three and �ve orders of magnitude lower than for Ba�C74, and for Mg�C74between seven and nine orders. In priniple, an endohedral with lower value of the enapsulation equilibrium onstantan still be produed in larger yields if a onvenient over-ompensation by higher saturated metal pressure an takeplae.Although the energy terms are likely still not preise enough, their errors are frequently omparable in reation se-ries. If this is also the ase in our enapsulation series, the errors should anel out in the relative term pX;satKX�C74;ppBa;satKBa�C74;p .This should be the ase of, for example, the basis set superposition error important for evaluation of the enapsulationpotential-energy hanges. A similar anellation should also operate for the higher orretions to the rigid-rotor andharmoni-osillator partition funtions, inluding motions of the enapsulate. The motion of the endohedral atom is
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