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Abstract: Phase behaviors in fluid state of systems of purely repulsive potentials (PRPs) are investigated with a recently 

proposed 3rd-order thermodynamic perturbation theory (TPT) (Phys. Rev. E. 2006, 74, 031119). It is found that a usual 

gas-liquid transition (GLT) always happen to several investigate PRPs, whose perturbation part as a function of particle 

separation holds a discontinuous point, or an indifferentiable point, or is differentiable, but with an additional length scale 

besides the hard sphere diameter. Other findings to include that 1: a longer range of the repulsive perturbation tail, or a 

bigger jump of the repulsive perturbation tail at an interrupted point, can stabilize the GLT more easily; 2: all of the GLTs 

resulting from the investigated PRPs is accompanied with a density anomaly, in contrast to the traditional GLTs due to a 

hard core plus an attractive tail. Finally, contrary to the previous findings in literature due to conventional 1st-order TPT, 

and 2nd-order TPT based on a macroscopic compressibility approximation (MCA), the present investigation does not dis-

cover for a square shoulder (SS) potential in any periodic phase behavior of critical temperature as a function of the repul-

sive step radius and high density liquid-low density liquid transition (HDL-LDL). A convergence analysis of the 3rd-order 

TPT indicates that the previously found SS potential phenomenology (Phys. Rev. E. 2003, 67, 010201(R); Phys. Rev. E. 

2006, 74, 041201), should be an artifact originating from the insufficiency of the employed 1st-order TPT and 2nd-order 

MCA-TPT. The counter examples are found to a liquid-liquid transition hypothesis (Nature, 1992, 360, 324) of the den-

sity anomaly. 

I. INTRODUCTION 

 It is well known that a hard sphere system experiences, 

only a phase transition which corresponds to an order of cen-

ters of gravity of particles and may be called as an order-

disorder transition or crystallization [1, 2]. When an extra 

attractive perturbation (called as attractive tail) is added to 

the hard sphere particles, the resultant system experiences an 

instability in a certain range of density and temperature, and 

generally a 1st-order phase transition with no symmetry 

change, which may be called as gas-liquid transition (GLT), 

appears [3]. When a repulsive interaction tail, such as a re-

pulsive Yukawa tail, is added to the hard sphere particles, the 

resultant system will not hold any GLT in the fluid phase [3]. 

 When the repulsive perturbation has a finite length, for 

example, a square shoulder (SS) repulsion is added to the 

hard sphere particles, the resultant system denoted by Eq. 

(1), will experience a high density liquid (HDL)-low density 

liquid (LDL) transition as reported in Ref. [4]. 

u r( ) = r < 1

> r 1

0 r

.           (1) 

 A more detailed investigation on the system with under-

lying potential (1) is carried out in Ref. [5] with help of a 

1st-order thermodynamic perturbation theory (TPT). It is 

found that the appearance of the HDL-LDL transition,  
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reveals some kind of periodic behavior of the critical 

temperature as a function of the repulsive step radius , the 

periodic behavior is considered in Ref. [5] to be obviously 

correlated with the behavior of the hard sphere radial distri-

bution function (rdf). It is recorded [5] that ‘for small values 

of , there is no phase transition, the HDL-LDL transition 

appears in the vicinity of 1.5  and disappears again for 

2 . On further increase of , the isotherms reveal some 

tendencies to the formation of a van der Waals loops’. 

 The HDL-LDL transition reported in Refs. 4-5 for system 

with the underlying SS potential (1) happens in very high 

density region, the critical reduced density is about 1 (here 

reduced density is defined as 
*
=

3
 with = N V  a 

number density, where N is the particle number and V is the 

volume are occupied by the system, respectively, while  

shows the hard sphere core diameter). In a recent investiga-

tion [6], a 2nd-order TPT based on a macroscopic com-

pressibility approximation (MCA) (2nd-order MCA-TPT), 

which is also employed in Ref. [4], is used to investigate the 

HDL-LDL transition system of the spherical particles inter-

acting via a core-softened attractive (CSA) potential, com-

bining a repulsive square shoulder and an attractive square 

well [7]. It is found that the predicted critical densities of the 

HDL-LDL transition are far larger than the corresponding 

simulation results [7], the predicted critical temperatures also 

deviate largely, from the simulation values. Therefore, the 

conventional 2nd-order MCA-TPT may not be reliable suffi-

ciently, for these discontinuous soft repulsive potentials, the 

conclusions drawn from the 2nd-order MCA-TPT or 1st-

order TPT calculation may not be accurate quantitatively, or 
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even problematic qualitatively [4, 5]. There exists a necessity 

to employ more accurate theoretical approach to investigate 

these purely repulsive, discontinuous potentials. In Ref. [6], 

a recently proposed 3rd-order TPT [8] by the present author, 

is employed to predict the critical parameters of the CSA 

potential. It is found that the critical parameters predicted 

from the 3rd-order TPT are in a very satisfactory agreement 

with the corresponding simulation results even for cases, 

where the predictions from the 2nd-order MCA-TPT are 

very poor or even incorrect qualitatively. Therefore, the 3rd-

order TPT is well qualified for these discontinuous potentials 

with a soft repulsion. 

 The organization of the paper is as follows. In Sec.II, the 

3rd-order TPT is recapitulated firstly, then a convergence 

analysis of the 3rd-order TPT is given. The 3rd-order TPT is 

then in the Sec.II used to investigate the phase transition 

properties in the fluid phase of several model fluids interact-

ing, through various PRPs, also a detailed analysis is given 

to the theoretically calculated results. Finally, in Sec.III the 

paper is ended by summarizing theoretical results reported 

presently, about the phase transitions in the fluid phase of the 

PRP systems. 

II. THE 3RD-ORDER TPT AND PHASE TRANSI-
TIONS OF SYSTEMS WITH UNDERLYING PRPs 

 The 3rd-order TPT [8] is given by: 

Fex = Fex ref + Fex Tail , and Fex Tail = Fex n
n=1

3

         (2) 

Fex n =
1

n!
N2 drr2uper r( )

n 1( )g r, ,( )
n 1( )

=0

.         (3) 

 Here, Fex ref  is an excess Helmholtz free energy of a ref-

erence hard sphere fluid with a potential uref , uper r( )  is 

perturbation part of the whole potential u r( )  given by: 

u r( ) = uref r( ) + uper r( ) .            (4) 

 In the present form of the 3rd-order TPT [8], uref r( )  is 

the hard sphere potential given by: 

uref r( ) = , r <

0, r >
           (5) 

g r, ,( )  is the rdf of bulk fluid with pair potential 

Fex ( ) = kT ln drNe
u rij ;( )

i< j V N  given by: 

u r;( ) = uref r( ) + uper r( ) .           (6) 

n 1( )g r, ,( )
n 1( )

=0

  

is the (n-1)th derivative evaluated at = 0  of g r, ,( )  

with respect to ,  

0g r, ,( )
0

=0

= g r, 0 ,( )   

is the rdf of the hard sphere fluid of density  and diameter 

. As done in Ref. [8],  

n 1( )g r, ,( )
n 1( )

=0

 

for n = 1, 2, 3  in the 3rd-order TPT is calculated by an Orn-

stein-Zernike (OZ) integral equation theory (IET). The 

Fex ref  is calculated by a Cananhan-Startling equation of 

state [9]. The readers can consult Ref. [8] for calculational 

details. The 1st-order and 2nd-order TPTs result when the 

Fex 2 ,Fex 3  and Fex 3  are respectively discarded away. 

 In the 2nd-order MCA-TPT, the excess Helmholtz free 

energy Fex  is given by 

Fex = Fex ref + N2 drr2uper r( )g r, 0 ,( )

N 2 drr2uper
2 r( )g r, 0 ,( )

1

P ref

,         (7) 

here, =
1

kT
 with k  Boltzmann constant and T  absolute 

temperature. The compressibility 
1

P ref

, and rdf 

g r, 0 ,( )  of the reference hard sphere fluid can be calcu-

lated by various routes. In Refs 4 and 5 they are obtained by 

a Percus-Yevick (PY) approximation for the OZ IET. 

 In Fig. (1), we present the hard sphere rdf,  

g r, ,( )

=0

,  

and 

2g r, ,( )
2

=0

 

for the SS potential denoted by Eq. (1), whereas the corre-

sponding results for a square well (SW) potential denoted by 

Eq. (8), is presented in Fig. (2), 

u r( ) = r < 1

> r 1

0 r

          (8) 

 By observing Fig. (1) and (2), one can find that the abso-

lute values of  

g r, ,( )

=0

and 

2g r, ,( )
2

=0

 

are generally smaller than that of the hard sphere rdf at the 

same interparticle separation for case of the SW fluid, there-

fore the 2nd-order term and 3rd-order term ignored in the 1st-

order TPT should be smaller quantities compared with the 1st-

order term, the ignorance of the 2nd-order term and 3rd-order 



44    The Open Chemical Physics Journal, 2008, Volume 1 Zhou et al. 

term may not be an ackward approximation, the resultant pre-

diction is at least qualitatively or even quantitatively correct. 

For the PRP, on the contrary, the absolute values of  

g r, ,( )

=0

and 

2g r, ,( )
2

=0

 

are even larger than that of the hard sphere rdf itself, there-

fore the 2nd-order term and 3rd-order term ignored in the 

1st-order TPT are not smaller quantities compared with the 

1st-order term, they contribute significantly to the total Fex . 

To illustrate the above analysis quantitatively, we present the 

calculated critical parameters for the HDL-LDL transition of 

the CSA potential [7] in Table 1, from which several conclu-

sions can be drawn. The 2nd-order MCA-TPT only improves 

upon the 1st-order TPT a little, this is in agreement with the 

observation in Ref. [8] that the 2nd-order term of the pertur-

bation expansion is severely underestimated by the MCA, 

when the value of 
*

 is high. The present 2nd-order TPT 

improves largely upon the 1st-order TPT and the 2nd-order 

MCA-TPT, this indicates that the perturbation expansion is 

convergent upto at least 2nd-order and the 2nd-order term 

can be tackled more accurately, by the present numerical 

method than by the MCA. The fact that the 3rd-order TPT 

again largely improves upon the 2nd-order TPT indicates 

that the perturbation expansion is also convergent at 3rd-

order and the retaining of the 3rd-order term is required for 

an improvement of accuracy of the TPT. We present the nu-

merical values of each expansion term of the TPT in Table 2, 

from which one finds that the magnitude of the 2nd-order 

term is even larger than that of the 1st-order term, the MCA 

underestimate severely, the magnitude of the 2nd-order term, 

the magnitude of the 3rd-order term is smaller than those of 

the 1st-order and 2nd-order term, but its incorporation into 

the perturbation expansion can significantly improve the 

accuracy of the resultant TPT. Therefore the appropriate 

order of the TPT should be the third order, and the 3rd-order 

TPT satisfactorily accounts for the thermodynamic proper-

ties of the CSA potential. From Table 1 shows that the 1st-

order TPT and 2nd-order MCA-TPT largely overestimates 

the critical density of the HDL-LDL transition of the CSA 

potential. Therefore, it is reasonable to suspect that the un-

usual high critical density of the SS potential predicted by 

the 1st-order TPT and 2nd-order MCA-TPT [4, 5] is an arti-

fact originating from the insufficiency of the 1st-order TPT 

and 2nd-order MCA-TPT, and there is a necessity to employ 

the present 3rd-order TPT for investigation of the SS poten-

tial. In fact, the present author finds in Ref. [6] that the 2nd-

order MCA-TPT fails to predict the appearance of the HDL-

LDL transition of the CSA potential for several parameters 

combinations, even if the simulation establishes the exis-

tence of the HDL-LDL transition. 

 Firstly, we calculate for the SS potential denoted by (1), 

the chosen values of the repulsive step radius  is equal to 

1.25, 1.5, 2 and 2.5 respectively. The reduced pressure 

( P 3
)-reduced density

*
isotherms for each case are pre-

sented in Fig. (3a-d). Unlike the conclusion obtained in Ref. 

[5], we have not found any periodic behavior of the transi-

tion critical temperature as a function of the , the 1st-order 

phase transition happens to each case, the reduced critical 

temperature Tc
*
= kTc  ( Tc  is absolute critical tempera-

ture) increases monotonously, as the  increases. To show 

that the monotonous behavior applies for each section of the 

range of the , we present in Fig. (4) the Tc
*
-  function 

with the  situated around 1.5 and 2 respectively. From Fig. 

(4) one can see that the Tc
*
 still monotonously increases as 

the  increases, this observation turns out contrary to the 

conclusion drawn in Ref. [4], in which the 2nd-order MCA-

TPT predict that the Tc
*
 decreases, when the  increases 

from = 1.4  to = 1.6 . 

 

 

 

Fig. (1). The 

n( )g r, ,( )
n( )

=0

with = 0,1, 2  for the SS fluid at 

three state points. 
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Table 1. Temperature 
 
T

C2

, Pressure 
 
P

C2

, and Density C2
 

for the Critical Point 
 
C

2
 of the CSA Potential in 

Ref. [7], Respectively Computed by MD Simulation 

Method [7] (1st Line), 3rd-Order TPT (2nd Line), 

2nd-Order MCA-TPT (3rd Line), 1st-Order TPT 

(4th Line), and 2nd-Order TPT (5th Line). The Po-

tential Parameters of Each Case Can Be Found in 

Ref. [7], the Symbols a  and UA  have the Same 

Meanings as in Ref. [7] 

 

Set 
 
kT

C2

U
A

 
 
a

3
P

C2

U
A

 a3 C2
 

0.53 ± 0.03 1.05 ± 0.03 0.39 ± 0.05 

0.5456 0.2843 0.4124 

1.5943 12.8694 0.9323 

1.6023 12.2189 0.9251 

(ix) 

0.1105 -2.6066 0.4912 

0.57 ± 0.01 0.58 ± 0.01 0.35 ± 0.02 

0.6632 0.3252 0.4166 

1.7333 9.8503 0.8912 

1.7545 9.3385 0.8945 

(x) 

0.2087 -0.9404 0.4821 

 

Table 2. The n-Order Term of the Perturbation Expansion 

for the CSA Potential in Ref. [7], the Potential Pa-

rameters of Set ix and x Can Be Found in Ref. [7], 

the Symbols a  and UA  have the Same Meanings as 

in Ref. [7]. 

 

Set (ix) Set (x) 

 
kT UA = 0.7  a3 = 0.7  kT UA = 0.7  a3 = 0.7  

1st-order term 5.345143 2.378280 

2nd-order term -8.095391 -8.125361 

2nd-order termMCA -1.482945 -1.603198 

3rd-order term -0.522470 -0.1086290 

 

 The periodic behavior is correlated in Ref. [5] with the 

behavior of the hard sphere rdf as follows. Since r 1.5 , 

r 2 , r 2.5  approximately correspond to the first 

minimum, second maximum, and second minimum of the 

hard sphere rdf, from Eq. (7) one can see that for 1.5  the 

contribution to the system free energy comes from the first 

coordination sphere, which changes most drastically under 

the fluid-fluid phase transition. A similar situation also takes 

place for 2.5 , where the contribution corresponds to the 

first and second coordination shells. For 2  the contribu-

tion is more smooth and hence, the transition will not result. 

In the present 3rd-order TPT, besides the first order term 

associated with the hard sphere rdf itself, there are two addi-

tional second order and third order terms respectively associ-

ated with the first order and second order derivative of the 

rdf, i.e. 

g r, ,( )

=0

 and 

2g r, ,( )
2

=0

.  

As shown in Fig. (1) for the SS potential, the 

g r, ,( )

=0

and 

2g r, ,( )
2

=0

 

are structured largely differently from the hard sphere rdf, 

the formers can even be valued negatively. Obviously, the 

expected periodicity of the theoretical results due to the first 

order term is largely destroyed due to inclusion of the 

g r, ,( )

=0

 and 

2g r, ,( )
2

=0

.  

 

 

 

Fig. (2). The 

n( )g r, ,( )
n( )

=0

 with = 0,1, 2  for the SW fluid at 

three state points. 
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Fig. (3). The families of the pressure-density isotherms for the SS 

potential for different values of . 

Therefore, the resultant Fex  in the 3rd-order TPT will not be 

of periodicity. It should be noted that although the 2nd-order 

MCA-TPT incorporates the 2nd-order term into itself, the 

2nd-order term is associated with the hard sphere rdf, not 

with the derivative of the rdf as done in the 3rd-order TPT. 

Therefore, as pointed out in Ref. [5] the phase transition pre-

dicted [4] by the 2nd-order MCA-TPT for the SS potential is 

still periodic as in the 1st-order TPT. 

 

Fig. (4). The critical temperature Tc
*
 as a function of the step ra-

dius  for the SS potential system. 

 The fluid phase coexistence curve for the SS potential is 

presented in Fig. (5) for potential parameter = 2  and 

= 5  respectively. As the critical reduced density c
*

 is 

low, what is shown in Fig. (5) is obviously a GLT curve, in 

contradiction to the LDL-HDL transition reported in Refs. 4, 

5 with the help of the 2nd-order MCA-TPT and the 1st-order 

TPT respectively. 

 

Fig. (5). The 1st-order phase transition in fluid state of the SS po-

tential system with = 2  and = 5 . 

 The GLT in the purely repulsive fluids is a challenge to 

the traditional van der Waals picture of fluid phase transi-

tion, which attributes the GLT to an attractive tail added to a 

steeply repulsive hard core. To confirm whether the GLT of 

the purely repulsive SS potential is due to an artifact of dis-

continuity of the perturbation potential or not, we define a 

new potential denoted by Eq. (9) whose special situation is 

exactly the SS potential, 

u r( ) = r < 1

1+
1( ) r 1( )
1( )

> r 1

0 r

.         (9) 
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 Here, 0  corresponds to the presently investigated 

PRP. When = 0 , the perturbation potential becomes con-

tinuous; When = 1 , the potential reduces to the SS poten-

tial (1). Value of the  determines the jump of the potential 

at the interrupted point r = , a larger  corresponds to a 

larger jump at the interrupted point. In Fig. (6), the potential 

is shown for the parameters = 2  and = 0, 0.5,1,1.5, 2  

respectively. The Tc
*
 as a function of the  for constant 

= 2  is presented in Fig. (7), which clearly reveals that the 

Tc
*
 decreases, when the  decreases. But even if the  

becomes equal to zero, i.e. the perturbation potential be-

comes continuous, the GLT still appears. Therefore, one 

concludes that the discontinuity of the perturbation potential 

is not a necessary condition for the presence of the GLT in 

the PRP, the GLT can happen to have a hard sphere plus 

purely repulsive and continuous perturbation potential, 

whose perturbation part includes an indifferentiable point. 

The Tc
*
 as a function of the  for constant = 0  is pre-

sented in Fig. (8), which shows that the Tc
*
 is an increasing 

function of . As in the case of = 1 , the = 0  case also 

does not display any periodic behavior of the transition criti-

cal temperature as a function of the . 

 

Fig. (6). The potential Eq. (9) for different  but fixed = 2 . 

 

Fig. (7). The critical temperature Tc
*
 as a function of the potential 

parameter  for the potential Eq. (9) with = 2 . 

 

Fig. (8). The critical temperature Tc
*
 as a function of the potential 

parameter  for the potential Eq. (9) with = 0 . 

 To indicate that the GLT generally happens to the PRP, 

we employ a truncated hard core repulsive Yukawa (HCRY) 

potential as the additional sample potential, 

u r( ) = r < 1

exp * r( ) r > r 1

0 r

,    (10) 

when = , the truncated HCRY potential reduces to the 

HCRY potential itself. It is well-known that the fluid phase of 

the HCRY potential is stable, and does not display any phase 

transition. However, when the HCRY potential is truncated at 

some finite r = , new situation appears. The pressure-

density isotherms for two cases of the truncated HCRY poten-

tial are presented in Figs. (9a,b) and (10), which show that the 

system with the underlying truncated HCRY potential experi-

ences are surely instable in certain fluid phase domain. 

 

 

Fig. (9). The families of the pressure-density isotherms in fluid 
state of the truncated HCRY potential (10). 



48    The Open Chemical Physics Journal, 2008, Volume 1 Zhou et al. 

 To further demonstrate, the generality of the GLT in fluid 

phase of the PRPs, we construct a new sample potential 

given by 

u r( ) = r < 1

1+
1( ) r 1( )
1( )

> r 1

exp * r( ) r r

,      (11) 

this potential consists of a linear ramp and a RY tail besides 

the hard sphere repulsion. Obviously, the potential function 

is indifferentiable at r = . The pressure-density iso-

therms for one case of the potential (11) are presented in 

Figs. (10) and (11). By comparing the Figs. (10) and (11) 

with the Figs. (7) and (8) one can see that when a continuous 

RY tail is added to the ramp repulsion, the instability appear 

more easily, the Tc
*
 becomes higher. This observation is in 

agreement with the Figs. (4-3,5-4,9-8) which indicate that 

the Tc
*
 increases as the potential range increases. 

 

Fig. (10). The families of the pressure-density isotherms for the 
potential (11). 

 

Fig. (11). The potential (12) for two sets of potential parameters as 
shown in the figure. 

 To indicate that the indifferentiability is also not neces-

sary condition for appearance of the fluid phase, instability 

in the purely repulsive systems, we will investigate a trun-

cated and shifted Gauss-like potential added to the hard 

sphere potential given by; 

u r( ) = r < 1

exp * r r0( )( )
2

r 1
.       (12) 

 In Fig. (11), the potential Eq. (12) is shown for two sets 

of parameter value: 
*
= 1 , r0 = 1.3  and 

*
= 0.1 , 

r0 = 1.4  respectively. Potential (12) is continuous and dif-

ferentiable, but the potential slope changes sign at some par-

ticle separation. The pressure-density isotherms for two 

cases of the potential (12) are presented in Fig. (12), which 

clearly shows that the continuous, differentiable, purely re-

pulsive perturbation combined with the hard sphere repul- 

 

 

 

Fig. (12). The families of the pressure-density isotherms for the 
potential (12). 

sion also experiences instability, and displays the GLT 

whose coexistence curve is not presented for simplicity. The 

only difference between the potential (12) and the complete 

HCRY potential free of fluid phase instability, is that the RY 

perturbation is a monotonous function of the particles sepa-

ration r , but the perturbation part of the potential (12) is a 

non-monotonous function of the r , the perturbation part of 

the potential (12) has a extreme value at r = r0 , whose exis-

tence induces an additional length scale. It is exactly the 

combination of the additional length scale and the original 

length scale, i.e. the hard sphere diameter , that induces 

the fluid phase instability in the hard sphere plus purely re-
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pulsive, continuous and differentiable perturbation tail. Here 

the second length scale or two scale potentials normally re-

fers to potentials that have two relevant ranges of the repul-

sive interaction. For instance, the standard ramp potential has 

a first length scale, which is the hard core, and a second 

length that is the range of the repulsive ramp. In the case of 

the one scale ramp potential the hard core is missing and one 

has a repulsive ramp down to zero separation. Existing litera-

tures [10-14] indicate that the additional length scale situated 

in the soft repulsion region of the potential, when combined 

with an attractive interaction at larger separation, can induce 

a HDL-LDL transition, the present investigation reveals that 

the additional length scale, unaccompanied by addition of 

the attractive tail, singly can induce the GLT. Therefore, one 

can conclude that the additional length scale may be a more 

essential property for appearance of fluid phase instability in 

systems with hard sphere plus purely repulsive perturbation. 

In fact, all of the above investigated sample potentials, which 

display the instability in the fluid phase, are all endowed 

with an additional length scale besides the hard sphere di-

ameter, one can see this point clearly from Figs. (6) and (11) 

and Eqs.(1,9-12). 

 Density anomaly is a common phenomena, occurring in 

many molecular liquids such as water, silica and carbon [15-

17]. Usually it is thought that the density anomaly is due to a 

HDL-LDL transition [18]. There exists a variety of indirect 

experimental and theoretical data favoring the HDL-LDL 

transition hypothesis [18] of the density anomaly. Figs. 

(3,9,10,12) show that the pressure isotherm cross each other, 

which implies a density anomaly since 
* T *( )

P
= 0  In 

Figs. (13a,b) the density as a function of temperature for 

different pressures is presented for potential (11,12), one 

clearly detects a density maximum and minimum. Consider-

ing that all of these systems only experiences the GLT, the 

present investigation, therefore supplies counter examples to 

the HDL-LDL transition hypothesis [18] of the density 

anomaly. 

 To explain why the GLT is never previously observed in 

computer simulation for the PRP, we present in Fig. (14) the 

phase diagram of the potential (12). To reduce the computa-

tional time for calculation of the solid phase free energy, the 

potential (12) is truncated and shifted at r = 8 , face-

centered cubic (fcc) solid phase free energy is calculated by 

a method detailed in Ref. [19]. An unusual finding is that the 

GLT is always metastable with respect to the order-disorder 

transition. Thus, we explain why the GLT has not been ob-

served in computer simulation, possibly because the metas-

table lifetime of these gas-liquid co-existence phases is too 

small to be resolved by computer simulation. Although, the 

GLT is metastable, its existence is not senseless. The recent 

experiments, numerical calculations, and theoretical consid-

erations [20-22] have shown that the presence of a metasta-

ble GLT critical point drastically changes the pathway for 

the formation of a crystal nucleus in solutions of globular 

proteins. Close to the critical point, the free energy barrier 

for crystal nucleation is strongly reduced, Hence, the crystal 

nucleation rate increases by many orders of magnitude. 

 

 

Fig. (13). The density 
*

 as a function of temperature T *
. Subfig-

ure (a) is for potential (11), Subfigure (b) is for potential (12). The 

potential parameters are shown in the figures. 

 

Fig. (14). Phase diagram of the potential (12) truncated and shifted 
at r = 8 . The potential parameters are shown in the figure. 

III. SUMMARIES 

 With the help of the accurate 3rd-order TPT, we investi-

gate in detail, the 1st-order phase transition in fluid phase of 

systems of particles, interacting through the PRPs. It is found 

that the 1st-order GLT generally exists in the PRPs, whose 

perturbation part holds on an additional length scale besides 

the hard sphere diameter, in contradiction to the traditional van 

der Waals picture of the fluid phase transition, which declares 
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that the GLT is necessarily induced by appending an attractive 

perturbation to the hard sphere potential. Concretely speaking, 

we find that the 1st-order GLT occurs generally in system of 

the PRPs, whose perturbation parts include a discontinuous 

point, or an indifferentiable point, or a sign change of the 

slope. In molecular liquids and complex fluids [23, 24], the 

underlying potentials are of a form of an effective potential 

usually originating from an average over the angular part of 

more realistic potentials or integration of free degree of small 

particles in the systems, the resultant effective potential is eas-

ily endowed with the additional length scale. Therefore the 

GLT generally occurring in these complex fluids and molecu-

lar liquids [25] does not conflict with the present conclusion. 

 As for the reason, why the additional length scale induces 

the otherwise non-existent GLT? It can be explained that it 

happens due to two preferred interparticle distances resulting 

from the two length scales. Thus, the system assumes a open 

structures at low pressure, and transforms to more compact 

structures at higher pressures, this corresponds to a collapse 

from the largest distance  or r0  to the smallest distance  

on applying pressure. The main difference of the GLT associ-

ated with the PRPs from that occurring in the traditional 

atomic fluids, whose particles interact through hard sphere 

repulsion plus an attractive tail, is that the former is often ac-

companied with the density anomaly, while the pressure iso-

therms never cross each other for the latter, and therefore the 

density anomaly never occurs for the latter. 

 Besides the theoretical significance of the PRPs, the inves-

tigation of the PRPs is also closely connected with the CSA 

potential [7]. In Ref. [7], it is shown that the HDL-LDL transi-

tion can happen unaccompanied by the density anomaly, con-

sidering that the density anomaly surely appears in the PRP 

fluids, therefore, one can conclude that a combinational influ-

ence from the soft repulsion at smaller interparticle distance 

and an attractive tail at larger interparticle distance can remove 

away the density anomaly and at the same time induce the 

HDL-LDL transition. The combinational influence from the 

soft repulsion and attractive tail makes the investigation of the 

CSA potential [7] a very interesting problem [26-28], but far 

away from solution. It may be a feasible route to uncover the 

mechanism for the rich phenomena displayed by the CSA 

potential by disentangling the CSA potential and selecting the 

hard sphere repulsion plus the soft repulsion for single investi-

gation, the present report is a first step towards the aim. 
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