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1. INTRODUCTION 

 A vast majority of modern microelectronic and 

nanoelectronic devices are built on the monocrystalline 

silicon substrates produced from the crystals grown by the 

Czochralski (CZ) process and the float-zone (FZ) process. 

Many of the advances in integrated-circuit (IC) 

manufacturing achieved in recent years would not have been 

possible without parallel advances in silicon-crystal quality 

and defect engineering. These studies are now approaching 

values that will allow the silicon starting material to be used 

in the production of critical component dimensions below 18 

nm. 

 Silicon crystals grown by the Czochralski process and 

floating zone method typically contain many structural 

imperfections termed grown-in microdefects. Grown-in 

microdefects degrade the electronic properties of 

microdevices fabricated on silicon wafers. Optimizing the 

number and size of grown-in microdefects is crucial to 

improving processing yield of microelectronic devices. The 

problem of defect formation in dislocation-free silicon single 

crystals during their growth is a fundamental problem of 

physics and chemistry of silicon. This problem is key to 

solving other complex problems in physics, chemistry, 

materials science and engineering applications of silicon 

crystals. 

 At present, numerous studies of dislocation-free silicon 

single crystals have provided a wide variety of scientific data 

on the regularities of the formation and interaction of point 

defects and enormous practical experience has been gained 

in growing perfect single crystals. Such a large database on 

the structural properties and the influence of defects on the 

physico-chemical properties of silicon has not been created 

for other dislocation-free single crystals. At the same time, 
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there has been no unified theoretical approach to the 

description of the interaction of point defects and the 

formation of an initial defect structure of dislocation-free 

silicon single crystals. 

 This paper reviews the major developments in 

understanding and quantifying the physics of the formation 

of grown-in microdefects. The main theoretical models of 

formation grown-in microdefects are analyzed. In contrast to 

models of the dynamics of point defects, we show that the 

bases of the formation of grown-in microdefects are 

processes of high-temperature precipitation. The new 

diffusion model of formation grown-in microdefects is 

proposed. The diffusion model allows to fully describing the 

process of defect formation in crystals during cooling after 

growth. This model is applicable for the dislocation-free 

silicon crystals of any diameter in the temperature range of 

cooling 1683...300 K. 

2. CLASSIFICATION OF GROWN-IN MICRO-
DEFECTS: EXPERIMENTAL RESEARCHES OF 

GROWN-IN MICRODEFECTS IN DISLOCATION-
FREE SILICON SINGLE CRYSTALS 

 Two approaches to the classification of grown-in 

microdefects in single crystals grown by methods of 

floating-zone (float zone silicon, FZ-Si) and Czochralski 

(Czochralski silicon, CZ-Si) are there. The first approach is 

based on the results of experimental studies using selective 

etching patterns of distribution of grown-in microdefects in 

the planes (111) and (112), depending on the crystal growth 

rate. According to these studies was developed of 

experimental classification of grown-in microdefects. 

Experimental classification of grown-in microdefects is 

based on the use of methods of selective etching, X-ray 

topography and transmission electron microscopy. It was 

developed in the works [1-6]. A.J.R. de Kock entered into 

circulation the name of A-microdefects and B-microdefects 

[1, 2], whereas .G. Sheihet entered into circulation the 

name C-microdefects, D-microdefects and (I+V)-
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microdefects [4-6]. These research allowed to establish the 

physical nature of A-microdefects, B-microdefects, C-

microdefects, D-microdefects and (I+V)-microdefects. The 

classification was developed taking into account the thermal 

conditions of growth and sign of deformation of the crystal 

lattice, caused by the defect (which is defined by us as the 

physical nature of the defect). Experimental results indicated 

the identity of the processes of defect formation in crystals of 

FZ-Si and CZ-Si [7]. This means that the classifications of 

grown-in microdefects in both types of crystals should also 

be identical [7]. 

 The second approach to the classification of grown-in 

microdefects in dislocation-free silicon single crystals should 

be considered as a technological. The larger the diameter of 

the growing crystal, the lower growth rate, at which the same 

type of grown-in microdefects is formed. This occurs by 

reducing the axial temperature gradient in the crystal [8]. 

This leads to the appearance of a new type of grown-in 

microdefects (microvoids) and dislocation-free crystal 

growth in a narrow range of growth rates [9]. In large 

crystals of interstitial dislocation loops and microvoids are 

considered as major grown-in microdefects in dislocation-

free silicon crystals [8-10]. 

 Let us briefly consider the types grown-in microdefects, 

which are included in experimental and technological 

classifications. 

 (I+V)-microdefects. They are represents a simultaneously 

coexisting in the same regions of the crystal grown-in 

microdefects of interstitial (Interstitial, I) and vacancy 

(Vacancy, V) types. The concentrations grown-in 

microdefects of the interstitial and vacancy types have 

comparable values. Were first discovered in the course of 

experiments using selective etching and X-ray topography in 

combination with the subsequent decoration with copper [4, 

11]. The authors of [11] made an erroneous assumption of 

about only the vacancy nature of these defects. In [12, 13] it 

has been suggested that under certain temperature conditions 

possibly simultaneous coexistence of vacancy and interstitial 

defects. In [6] using transmission electron microscopy was 

investigated in detail the physical nature of the defects that 

were discovered in [4, 11]. It was shown that they really are 

(I+V)-microdefects. 

 It was found that (I+V)-microdefects begin to form in the 

FZ-Si with a diameter of 30 mm at rates growth between 6.0 

... 6.5 mm/min, while in CZ-Si with a diameter of 50 mm at 

rates growth between 1.5...1.8 mm/min [7]. It was found that 

in crystals of FZ-Si with a diameter of 30 mm at rate growth 

6.0 mm / min the concentration of microdefects of interstitial 

and vacancy types are in the relation 4:1 [6]. With increasing 

of growth rate fraction of vacancy type of defects increases 

in (I+V)-microdefects [14]. The concentration of defects is ~ 

10
13

 ... 10
14 

cm
-3

, their size is 3 ... 12 nm [6, 15]. It was found 

that in crystals quenched during the growth of the 

microdefects of interstitial and vacancy types have 

approximately the equal concentrations [14]. It is established 

that (I+V)-microdefects are the primary oxygen-vacancy and 

carbon-interstitial agglomerates [15, 16]. They are formed on 

the impurity centers and represent the primary element the 

subsequent transformation of the defect structure of crystal 

FZ-Si and CZ-Si [14]. 

 D(C)-microdefects. D(C)-microdefects were first 

detected in FZ-Si after selective etching in a uniform 

distribution [4]. The crystal growth rate was more than 4.5 

mm/min, diameter crystal was 30 mm. In CZ-Si these 

defects were first observed in [17]. With the help of electron 

microscopy research were identified defect sizes (~ 3 ... 10 

nm) and their concentrations (~ 10
13

 ... 10
14

 cm
-3

) [18]. 

 We note that in paper [11], not only (I+V)-microdefects 

were erroneously identified as vacancy defects, but also 

erroneously these defects have been named D-microdefects. 

The results of paper [11] have generated debate about the 

nature of D-microdefects. For example, it was assumed that 

D-microdefects are divided into subclasses and have of 

interstitial and vacancy nature [19]. However, most 

researchers on the basis of papers [11, 20] done an 

assumption about the vacancy nature of D-microdefects. 

 Detailed electron microscopic studies showed that D-and 

C-microdefects in FZ-Si and CZ-Si are completely identical 

of electron microscopic images and the sign of the 

deformation of the crystal lattice. They are the interstitial and 

vacancy defects [21]. In contrast to (I+V)-microdefects the 

concentration of vacancy D(C)-microdefects two orders of 

magnitude lower than the concentration of interstitial D(C)-

microdefects [21]. With decreasing crystal growth rate of the 

defect sizes are increases [14]. It is shown that D (C)-

microdefects are uniformly distributed in macrovolume of 

small B-microdefects [14]. 

 B-microdefects. B-microdefects are the next stage of 

development of D(C)-microdefects. It should say that D(C)-

microdefects are uniformly distributed small B-microdefects, 

or that B-microdefects are big D(C)-microdefects in the 

banded distribution [14]. 

 B-microdefects were first observed simultaneously with 

the A-microdefects in FZ-Si as the pits with a flat bottom in 

the form of equilateral triangles with sides along to 

directions the [110] on the plane (111) [1, 22]. The 

distribution of etch pits in the cross section of the single 

crystal was in the form of turbulences. Therefore A-

microdefects and B-microdefects were identified as swirl-

defects (swirl defects) [23, 24]. In CZ-Si, these defects were 

first observed in [17]. 

 B-microdefects are interstitial and vacancy nature [21, 

25, 26]. Dimensions of interstitial defects are within 15 ... 50 

nm, their concentration is ~ 10
10

 cm
-3

 [14]. Concentration of 

vacancy B-microdefects two orders of magnitude lower than 

the concentration of interstitial B-microdefects [21, 25, 26]. 

Part B-microdefects, which has of square and rhombic 

shapes in projection on the planes {111} represents oxygen 

precipitates [14]. Another of their part is a carbon 

precipitates [14]. 

 A-microdefects. A-microdefects are separate dislocation 

loops with sizes within 1 ... 5 m or cluster of such loops of 

interstitial type [2, 3]. The size of interstitial dislocation 

loops is inversely proportional to the crystal growth rate. In 

some cases, the dislocation line loops decorated of 
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background impurities of carbon and oxygen. A-

microdefects are interstitial type dislocation loops with 

Burgers vector b = 1 / 2[110]  and lay in the planes {110} 

and {111} [2, 3]. The average concentration of A-

microdefects in the crystal volume is ~ 10
6
 cm

-3
 [2, 3]. 

 With increasing the size of A-microdefects to some value 

in single crystals arise of dislocations [27, 28]. On the 

occurrence of dislocations affect the sizes and relative 

position of microdefects and the distance between them [29]. 

 Transformation of the initial defect structure during the 

growth of dislocation-free single crystals occurs to the 

scheme: (I+V)-microdefects  D(C)-microdefects  B-

microdefects  A-microdefects [14]. (I+V)-microdefects, 

D(C)-microdefects and B-microdefects are precipitates of 

background impurities of carbon and oxygen. Sizes and 

shape of the precipitates are defined the temperature 

conditions of crystal growth. 

 OSF-ring. In large crystals CZ-Si (diameter  100 mm) 

after thermal oxidation in the plane (111) is formed ring 

distribution of oxidation stacking faults (OSF-ring) [30]. 

Stacking faults are formed around the plate of oxygen 

precipitates [31]. Volume density of precipitates does not 

change with increasing oxidation time. This means that the 

formation of precipitates takes place during crystal growth. 

OSF-ring is observed in crystals (diameter 150 mm) grown 

at 0.7 ... 0.8 mm/min and is absent in crystals grown at 0.4 

mm/min and at 1.1 mm/min [31]. 

 OSF-ring nucleates at the precipitates of distribution ring 

D-microdefects in the plane (111) [14]. Established that ring 

D-microdefects in the plane (111) is composed of 

precipitates of oxygen and carbon [14]. In the plane (112) 

OSF-ring corresponds to V-shaped or W-shaped distribution 

of D-microdefects. 

 Vacancy microvoids. Currently the vacancy microvoids 

(or microvoids) are defined as defects inside the OSF-ring in 

the large crystals of CZ-Si. In papers [32, 33] were first 

carried out electron microscopic study of crystals with 

microvoids. Octahedral shape of these defects was 

determined. The sizes of microvoids are within 100 ... 500 

nm [32, 34]. Found that the concentration of microvoids is 

within 10
4
...10

5
 cm

-3
 [34]. 

 Established that the microvoids are formed in the 

temperature range 1403...1343 K [34]. Formation of the 

microvoids is occurs in two stages [35]. In the first stage in 

the temperature range 1403...1343 K occurs rapidly growth 

of sizes. In the second stage in the temperature range 

1323…1173 K occurs precipitation of oxygen and carbon 

atoms on the inner side of the vacancy complex. These 

results were confirmed by subsequent researches [34, 36]. 

 Analysis of the experimental results of investigations of 

grown-in microdefects indicates that there are only three 

types of grown-in microdefects: precipitates of impurities 

((I+V)-microdefects, D(C)-microdefects, B-microdefects), 

interstitial dislocation loops (A-microdefects) and 

microvoids. The modern classification of grown-in 

microdefects should take into account this fact. Therefore it 

must be built on a different basis. 

3. THE MODELING FORMATION OF THE GROWN-
IN MICRODEFECTS 

 For research formation of grown-in microdefects must 

know the physical phenomena occurring during growth in 

dislocation-free silicon single crystals. In turn, the 

mathematical model should describe the full range of 

physical phenomena. 

 Modern computational methods and modern computers 

allow you to perform detailed parametric investigations of 

mathematical processes is very complex physical processes. 

Such investigations are called of the computational 

experiment. Computational experiment in the most general 

form consists of the following stages: (i) determination (or 

choice) the physical model of the system; (ii) choice of 

mathematical model, which is an adequate physical model; 

(iii) choice or development of a method of calculation in 

accordance with the mathematical model; (iv) the creation of 

the program for calculating with the help of the computer; 

(v) conducting multivariate calculations and processing of 

their results; (vi) calculation results are compared with 

experimental data or other theoretical researches. Then are 

held refinement the mathematical and physical models of the 

system. The general concept of computational experiment 

allows us to supplement experimental research results. 

3.1. Physical Modeling 

 During the years 1975-1982 were proposed several 

physical models of formation of grown-in microdefects: (i) 

equilibrium interstitial-type model [24]; (ii) non-equilibrium 

interstitial-type model [2]; local melting model (drop model) 

[37]; vacancy-type model [38]; vacancy-interstitial type 

model [23, 39]. In article [40] was carried out a critical 

review these of the physical models. The analysis showed 

that none of the models does not explain the experimental 

data on the research of grown-in microdefects. In 1982 he 

was proposed the recombination-diffusion model [20]. This 

model can be considered as a symbiosis of all pre-existing 

models. 

 Recombination-diffusion model assumes fast 

recombination of intrinsic point defects at the initial moment 

of cooling the grown crystal [20]. Fast recombination 

determines the type of dominant intrinsic point defects in the 

crystal. The result of the recombination selection depends on 

the ratio transport flows of intrinsic point defects in the 

growing crystal (determined the rate of crystal growth, Vg) 

and diffusion of intrinsic point defects near the 

crystallization front (determined by an axial temperature 

gradient, G). For large values of the ratio Vg/G the 

contribution of diffusion is assumed small. In this case will 

be dominated defects with higher initial concentration. For 

small values of Vg/G basic is expected contribution of 

diffusion. In this case will be dominated defects with higher 

diffusion coefficient. 

 In this model was first used mathematical tool which 

allows you to associate the defect structure of crystal with 
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distribution in the crystal thermal fields during the growth. 

This was achieved by introducing into consideration the of 

the growth parameter Vg/G. It is assumed that in the case 

Vg/G < crit formed only interstitial A-microdefects as a 

result of aggregation of intrinsic interstitial silicon atoms. It 

is assumed that in the case Vg/G > crit formed only 

microvoids as a result of aggregation of vacancies. OSF-ring 

in this model represents a region where are of the small 

oxygen precipitates of vacancy type [9, 41]. 

 In this physical model, the interaction between the 

impurities and intrinsic point defects is not considered [10]. 

It is assumed that at cooling of the crystals in the 

temperature range 1683...1423 K, depending on the thermal 

conditions of growth formed tiny (invisible) clusters of 

vacancies (D-microdefects) or intrinsic interstitial silicon 

atoms (B-microdefects). It is assumed that these clusters at 

1223 K< T  1423 K transformed into a microvoids or 

interstitial dislocation loops (A-microdefects) accordingly 

[10]. This process of transformation leads to a sharp 

reduction in the concentrations of intrinsic point defects in 

the relevant parts of the crystal. With further cooling of the 

crystal residual intrinsic point defects are involved in the 

formation in these areas of oxygen clusters [9]. 

 Recently within this model are made attempts to explain 

the effect of impurities on the formation of grown-in 

microdefects. In article [42] suggested that during the 

cooling of the crystal in the temperature range 1683...1423 K 

occurs the formation of complexes VO and VO2 (where V is 

the vacancy, O is the oxygen). However, these complexes do 

not lead to the formation of precipitates in this temperature 

range. Free and bound (VO and VO2) vacancies are 

expended initially on the formation of microvoids (1223 K< 

T  1423 K) and then are expended on the formation of O-

clusters (precipitates of oxygen) at T < 1223 K [42]. Exactly 

the same approach applies to nitrogen impurity with similar 

results of calculations [43]. In the articles [42, 43] ignored 

the effect of impurities on the formation of interstitial 

grown-in microdefects. Also in these papers ignored the 

participation of intrinsic interstitial silicon atoms during the 

formation of vacancy microdefects. 

 In the general case recombination-diffusion model 

assumes that the process of defect formation in dislocation-

free silicon single crystals occurs in four stages: (i) fast 

recombination of intrinsic point defects near the 

crystallization front; (ii) the formation in the narrow 

temperature range 1423...1223 K depending on the value of 

Vg/G microvoids or interstitial dislocation loops; (iii) the 

formation of oxygen clusters in the temperature range 

1223...1023 K; (iv) growth of precipitates as a result of 

subsequent heat treatments. 

 Based on the synthesis of numerous experimental and 

theoretical research as the physical model we have 

developed the two-stage mechanism for the formation and 

transformation of grown-in microdefects ( or heterogeneous 

mechanism) [7, 14]. This physical model on the 

experimentally and theoretically established fact the absence 

of recombination of intrinsic point defects near the 

crystallization front of the crystal is based [44]. It is assumed 

that due to of the elastic interaction between the intrinsic 

point defects and the residual impurities the vacancies and 

intrinsic interstitial silicon atoms are drains on impurities of 

oxygen and carbon accordingly [14]. More details two-stage 

mechanism for the formation and transformation of grown-in 

microdefects will be discussed in paragraph 3. 

3.2. Mathematical Modeling 

 At present, the defect formation processes in a 

semiconductor crystal, in general, and in silicon, in 

particular, have been described using the model of point 

defect dynamics; in this case, the crystal has been considered 

a dynamic system and real boundary conditions have been 

specified [10, 41-43, 45]. The mathematical model of point 

defect dynamics in silicon quantitatively explains the 

homogeneous mechanism of formation of microvoids and 

interstitial dislocation loops and provides the basis for the 

understanding of the relation between the defect crystal 

structure and the processes occurring in the melt [10]. The 

concentrations of defects have been calculated under the 

assumption of a rapid recombination of vacancies and 

intrinsic interstitial silicon atoms in a relatively narrow 

region in the vicinity of the crystallization front. This 

circumstance leads to the fact that primary defects (vacancies 

and intrinsic interstitial silicon atoms) are characterized by 

equilibrium concentrations [20]. The concentration of 

remaining primary defects after the passage of the narrow 

recombination region can be determined reasoning from the 

flux of defects deep into the crystal. Further cooling and 

pulling of the crystal are accompanied by the formation of 

aggregates of primary defects: microvoids in the region of 

dominance of vacancies and interstitial dislocation loops in 

the region of dominance of intrinsic interstitial silicon atoms. 

 In the general case, the model describing the defect 

dynamics in a crystal involves the kinetics of Frenkel 

reactions, nucleation of point defects, growth of clusters, and 

point defect balance [10]. The mutual annihilation and the 

formation of pairs of point defects over the entire volume of 

the crystal are considered in the kinetics of Frenkel reactions. 

A series of bimolecular reactions is considered in the section 

of nucleation of point defects. The motion of complexes of 

point defects in the direction from the melt-crystal interface 

is considered in the section of cluster growth. The balance of 

point defects includes their diffusion and convection, Frenkel 

reactions, and their consumption for the formation of 

clusters. The basic equations for the point defect balance are 

written in the following form: 

Ci

t
=

Di

Ci

z
z

V
Ci

z
kIV (CiCv Ci,eCv,e )

4 Di (Ci Ci,e ) Rcl ,i (z, , t)Jcl ,i ( , )d
0

t

Jcl ,i (z, t)mi
*

 (1) 

Cv

t
=

Dvi

Cvi

z
z

V
Cvi

z
kIV (CiCv Ci,eCv,e )

4 Dv (Cvi Cv,e ) Rcl ,v (z, , t)Jcl ,v ( , )d
0

t

Jcl ,v (z, t)mv
*

 (2) 
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 Here, Ci,v  are the concentrations of vacancies (v) and 

intrinsic interstitial silicon atoms (i) in the crystal to be 

grown; Cie,ve  and Di,v  their equilibrium concentrations and 

diffusion coefficients, respectively; Jcl , j  is the concentration 

of critical clusters; m* is the number of monomers; Rcl  is 

the radius of a critical cluster; J( , )  is the rate of cluster 

formation; kIV  is the recombination factor;  is the time of 

cluster formation; = z V d
t

 is the distance from the 

crystallization front to the region of cluster formation; and 

 is the time between the instants of time t and . 

 In the simulation of the formation of interstitial 

dislocation loops and microvoids, the authors of the model of 

point defect dynamics consider their nucleation and 

formation in a narrow temperature range = z V d
t

 at T 

< Tm - 300 K, where Tm is the melting temperature [10]. 

 In Eqs. (1) and (2), the variations in the point defect 

concentrations are due to their diffusion (first term), 

convection (second term), Frenkel reactions (third term), 

their consumption for the existing clusters (fourth term), and 

the formation of new clusters (fifth term). The rate of 

consumption of point defects for the formation of new 

clusters is negligible and, subsequently, can be ignored [10]. 

 The diffusion-limited growth rates of clusters (for any z 

and t) formed at the corresponding quantities  and  are 

described by the equations 

Rcl ,i
2 (z, , t)

t
=
2Di

i,cl

(Ci Ci,e ) V
Rcl ,i
2 (z, , t)

z
 (3) 

Rcl ,v
2 (z, , t)

t
=
2Dv

v,cl

(Cv Cv,e ) V
Rcl ,v
2 (z, , t)

z
 (4) 

where  is the density of monomers in the cluster. 

 The equations for the nucleation rates are represented in 

the form 

Jcl ,i (z, t) = [4 Rcl ,i (mi
* )DiCi ] kbT ln

Ci

Ci,e

(12 Fi
*kbT )

1/2 [ sitee
( Fiv

* /kbT ) ]  (5) 

Jcl ,v (z, t) = [4 Rcl ,v (mv
* )DviCv ] kbT ln

Cvi

Cv,e

(12 Fv
*kbT )

1/2 [ sitee
( Fv

* /kbT ) ]  (6) 

where F* is the maximum change in the free energy and site 

is the concentration of nucleation sites (in formula (5)). 

 The initial length or height of the crystal is taken to be 0. 

For the crystal with a finite length h, the equilibrium 

conditions are assumed to be dominant over the entire 

surface, including the crystal-melt interface: 

h(t = 0) = 0  (7) 

Ci (z = 0, t) = Ci,e  (8) 

Cv (z = 0, t) = Cv,e  (9) 

Ci (z = h, t) = Ci,e  (10) 

Cv (z = h, t) = Cv,e  (11) 

 The initial size of the steady-state critical cluster is 

negligible as compared to the microdefect size. 

Consequently, the initial size of the stable cluster 

insignificantly affects its final size. The initial size of the 

stable cluster (nucleus) is calculated from the number of 

monomers in the critical cluster: 

Rcl ,i ( , ) =
3

4

mi
*

i,cl

1/3

 (12) 

Rcl ,v ( , ) =
3

4

mv
*

vi,cl

1/3

 (13) 

 Equations (1)-(13) together with the energy balance of 

the hot zone control and determine the quantitative dynamics 

of point defects. In semiconductor industry, the crystal 

quality has been frequently determined from the total 

concentration or total density and represented by the average 

size of existing clusters [10]. The total density of clusters is 

calculated by summation of clusters of different sizes in the 

current state: 

Ncl ,i = Jcl ,i ( , )d
0

t

 (14) 

Ncl ,v = Jcl ,v ( , )d
0

t

 (15) 

 The average cluster radius is defined as 

Rcl ,i,avg =

Rcl ,i
3 (z, , t)Jcl ,i ( , )d

0

t

Jcl ,i ( , )d
0

t

1/3

 (16) 

Rcl ,v,avg =

Rcl ,v
3 (z, , t)Jcl ,v ( , )d

0

t

Jcl ,v ( , )d
0

t

1/3

 (17) 

where avg stands for the average volume. 

 The model of point defect dynamics under consideration 

is one-dimensional in nature, and, hence, the influence of the 

radial diffusion that is dominant in the vicinity of the surface 

of the crystal is disregarded. Therefore, the model can be 

applied to an axial distribution of defects in the crystal for 

fixed radial positions far from the surface. The energy 

balance can be calculated using the quasi-steady-state 

approximation [10]. 

 It should be noted that, in the general case, the model of 

point defect dynamics includes three approximations: 

rigorous, simplified, and discrete-continuum approaches. 
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The rigorous model requires the solution to integro-

differential equations for point defect concentration fields, 

and the distribution of grown-in microdefects in this model 

is a function of the coordinates, the time, and the time of 

evolution of the size distribution of microdefects [41, 46]. A 

high consumption of time and cost for the performance of 

calculations required the development of a simplified model 

in which the average defect radius is approximated by the 

square root of the average defect area. This approximation is 

taken into account in the additional variable, which is 

proportional to the total area of the defect surface. The 

simplified model is effective for calculating the two-

dimensional distribution of grown-in microdefects [42]. Both 

models use the classical nucleation theory and suggest the 

calculation of the formation of stable nuclei and the kinetics 

of diffusion-limited growth of defects. The discrete-

continuum approximation suggests a complex approach: the 

solution to discrete equations for the smallest defects and the 

solution to the Fokker-Planck equation for large-sized 

defects [47]. 

4. THE TWO-STAGE MECHANISM FOR THE 
FORMATION AND TRANSFORMATION OF 

GROWN-IN MICRODEFECTS (HETEROGENEOUS 

MECHANISM) 

 As mentioned above, a two-step mechanism of formation 

of grown-in microdefects in contrast to the recombination-

diffusion model based on the assumption about the absence 

of recombination intrinsic point defects at high temperatures. 

This assumption was confirmed in several experimental 

works [7, 15]. In paper [44] we first theoretically proved the 

absence of recombination of intrinsic point defects at high 

temperatures and fast recombination at low temperatures. 

4.1. Determination of Recombination Parameters of 
Point Defects 

 The inclusion of the entropy barrier and the coefficient of 

joint self-diffusion of vacancies and interstitial silicon atoms 

in thermodynamic calculations leads us to the conclusion 

that there exists a recombination barrier [7]. However, this 

conclusion is inconsistent with the Voronkov theory. It 

should be noted that the experimental results obtained from 

transmission electron microscopy and the heterogeneous 

mechanism of formation of grown-in microdefects confirm 

the theoretical assumptions made earlier by Hu [23] and Sirtl 

[39]. 

 The microscopic model of a recombination barrier was 

thoroughly developed by Gösele et al., [48]. In essence, this 

model is as follows: the dependence of the barrier height on 

the temperature is determined by the configuration of 

intrinsic point defects at high temperatures. In the framework 

of the model under consideration, it is assumed that, at high 

temperatures, intrinsic interstitial silicon atoms and 

vacancies are extended over several atomic volumes (eleven 

atoms occupy ten unit cells). This means that, around a point 

defect, there is a disordered isotropic region extending up to 

the atoms involved in the second coordination sphere. 

According to the results reported in the aforementioned 

papers, recombination can occur only when defects of two 

types are simultaneously contracted in the vicinity of one 

atomic volume. Since the extended defect configurations are 

characterized by a larger number of microstates as compared 

to those of a point defect, this contraction leads to a decrease 

in the entropy and, consequently, an entropy barrier S < 0 

exists. As the temperature decreases, the entropy barrier is 

considerably reduced and disappears completely at low 

temperatures and defects readily recombine. This process is 

associated with the variations observed in the configurations 

of intrinsic point defects, which are extended at high 

temperatures and have a point dumbbell-like configuration at 

low temperatures, as was shown in [48]. It should be 

emphasized that the theory of extended defect 

configurations, as well as of a recombination barrier, was 

confirmed in a number of recent studies [49, 50]. 

 At high temperatures the temperature dependence of the 

configurational entropy for the aforementioned model of a 

defect can be described by the relationship [51]: 

Sc (T ) = S (1
Tk
T ) .. (18) 

where S  is the limiting value of the configurational entropy 

c
S  (at 

m
TT ), 

m
T  is the melting temperature, and 

k
T  is 

the characteristic temperature. It was shown that 

Sc (T ) = 24.3k(1 723
T )  (19) 

 According to the model proposed in [48], the free energy 

of the recombination barrier can be represented by the 

formula G = T S , because the contribution of the 

enthalpy term H  is negligible. The temperature 

dependence of the recombination barrier height is governed 

by the entropy of formation of point defects. Hence, we can 

write 

G(T ) = T [ Sc (T )] = TSc (T )  (20) 

 Approximate estimation at a temperature T = Tm  leads to 

the free energy of the recombination barrier 

G(1683K ) = 2.014eV  [44]. 

 The recombination time 
1
 at high temperatures can be 

evaluated from the expression 

1 = / 4 D(T )r0 exp( G(T ) / kT )  (21) 

where  is the volume of the crystal lattice in the model 

proposed by Gösele et al. [48] and r0 = 3 10
8

cm is the 

recombination radius. Approximate estimation at a 

temperature leads to the recombination time 1 = 316 s. It 

should be noted that, according to the estimates made with 

the use of the recent data reported by Tang et al., [52] and 

Bracht et al., [53], we obtain 1 = 110 and 132 s, respectively. 

 The recombination factor kIV (T )  is described by the 

theory of diffusion-limited reactions together with the kinetic 

activation barrier [41]. At high temperatures, the 

recombination factor can be written in the following form: 
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kIV (T ) = 4 r0D(T ) exp( G(T ) / kT ) / cs  (22) 

where cs = 5·10
22

 cm
-3

 is the atomic density. The estimation 

at a temperature T = Tm  leads to the recombination factor 

kIV(1683 K) = 6.3·10
-26

 cm
3
/s. Lemke and Sudkamp [54] 

introduced the following criterion for “rapid recombination”: 

kIV(1683 K)CVm  20 s
-1

, where CVm = 11.7·10
14

 cm
-3

 is the 

vacancy concentration at T = Tm . For our model of point 

defect dynamics, the criterion for rapid recombination does 

not hold. 

 Thus, we theoretically demonstrated that the process of 

recombination of intrinsic point defects in Fz-Si and Cz-Si 

single crystals in the vicinity of the crystallization front is 

hindered by the recombination barrier. Consequently, we can 

make the inference that vacancies and intrinsic interstitial 

silicon atoms find their sinks in the form of oxygen and 

carbon background impurities, respectively. 

 The recombination time 2  at low temperatures can be 

estimated from the relationship [55] 

2 (T ) = exp(C /TSc )  (23) 

 Under these conditions, Antoniadis and Moskowitz [56] 

evaluated the energy barrier at the temperature T = 1373 K 

( G = H = 1.4 eV) by means of comparing the 

experimentally measured lifetime of vacancies and the 

growth rate for a diffusion-limited reaction. The limiting 

value of the recombination time = 634.13 s can be 

determined from relationship (23) at a temperatureT = Tm . 

As a result, we obtain 

2 (T ) = 634.13exp( G /TSc (T ))  (24) 

 Approximate estimation leads to 2 = 316.4 s at T = Tm  

and 2  0 at T = 723 K (estimates without regard for the 

vibrational entropy). At low temperatures, the recombination 

factor kIV(T) can be determined from the expression 

kIV (T ) = 4 r0[DI (T ) + DV (T )]exp( G / kT ) / cs  (25) 

where DI (T ) = 1.76 10
2 exp( 0.937 / kT ) cm

2
 s

-1
 and 

DV (T ) = 1.70 10
3 exp( 0.457 / kT )  cm

2
 s

-1
 [2]. 

Approximate estimation at a temperature T = 723 K leads to 

the recombination factor kIV  10
-9

 cm
3
 s

-1
. Therefore, the 

criterion for rapid recombination is satisfied fairly well. 

 Consequently, the processes of recombination of intrinsic 

point defects at low temperatures (for example, under 

conditions of ion implantation) proceed at a rather high rate. 

Our theoretical calculations confirm the validity of the 

entropy barrier model, according to which the decrease in the 

barrier height is caused by the decrease in the configurational 

entropy with decreasing temperature. 

 The experimental data and the results obtained from 

thermodynamic calculations have demonstrated that the 

process of aggregation of point defects dominates over the 

process of recombination of intrinsic point defects. At high 

temperatures, the process of recombination makes an 

insignificant contribution to the process of aggregation. 

Consequently, vacancies and intrinsic interstitial atoms 

coexist in thermal equilibrium. As a result, intrinsic point 

defects of both types are simultaneously involved in the 

process of aggregation. The decomposition of a 

supersaturated solid solution of point defects occurs upon 

cooling through two mechanisms, namely, the vacancy and 

interstitial mechanisms, with the formation of oxygen-

vacancy and carbon- interstitial agglomerates [14]. 

4.2. The Physical Classification and Physical Model of 
Formation and Transformation of Grown-in 

Microdefects 

 Absence of recombination intrinsic point defects at high 

temperatures allows us to propose a new physical model of 

the formation grown-in microdefects. We define it as a two-

stage mechanism (or heterogeneous mechanism) of 

formation of grown-in microdefects. Both names of the 

physical model of formation of grown-in microdefects are 

equal. The first name describes the decomposition of the 

supersaturated solid solution of point defects during cooling 

through the vacancy and interstitial mechanisms. The second 

name describes the role of oxygen and carbon impurities in 

the formation of grown-in microdefects. 

 The basic concepts of the heterogeneous mechanism for 

the formation and transformation of grown-in microdefects 

imply the following [14]: (i) the recombination of intrinsic 

point defects at high temperatures can be neglected; (ii) 

background carbon and oxygen impurities are involved in 

the defect formation as nucleation centers; (iii) the decay of 

the supersaturated solid solution of point defects when the 

crystal is cooled from the crystallization temperature occurs 

in two independent ways (branches): vacancy and interstitial; 

(iv) the defect formation is based on primary agglomerates 

formed as the crystal is cooled from the crystallization 

temperature due to the interaction between the impurities and 

intrinsic point defects; (v) when the crystal is cooled at 

temperatures below 1423 K, depending on the thermal 

growth conditions, secondary grown-in microdefects are 

formed due to the interaction between intrinsic point defects; 

(vi) the secondary grown-in microdefects are formed due to 

the coagulation (microvoids and A-microdefects) and 

deformation (A-microdefects) effects; (vii) the vacancy and 

interstitial branches of the heterogeneous mechanism have a 

symmetry, which implies simultaneous processes of defect 

formation during the decay of supersaturated solid solution 

of point defects; and (viii) the consequence of this symmetry 

is the formation of vacancy and interstitial grown-in 

microdefects of the same type and, correspondingly, the 

growth of dislocation-free Si single crystals in the same 

vacancy-interstitial mode (Fig. 1). It was revealed that the 

growth parameter Vg/G = crit describes the conditions under 

which the (111) face appears on the crystallization front [14]. 

 The heterogeneous mechanism of the formation of 

grown-in microdefects assumes that the defect formation in 

dislocation-free Si single crystals upon cooling occurs in 

three stages: (i) the formation of impurity aggregates - 

primary grown-in microdefects near the crystallization front, 

(ii) the formation and growth of impurity precipitates upon 

cooling from the crystallization temperature, and (iii) the 
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formation of microvoids or interstitial dislocation loops - 

secondary grown-in microdefects (depending on the growth 

parameter Vg/G - in a narrow temperature range of 

1423…1223 K [14]. 

 The basic elements of defect formation are primary 

oxygen-vacancy and carbon-interstitial agglomerates, which 

are formed at impurity centers near the crystallization front. 

An excess concentration of intrinsic point defects (vacancies 

or silicon self-interstitials) arises when the crystal is cooled 

under certain thermal conditions. This process leads to the 

formation of secondary grown-in microdefects ( -

microdefects or microvoids) (Fig. 2). 

 The differences in the physical nature of the formation of 

primary and secondary grown-in microdefects allow one to 

consider the defect structure to be composed of two 

subsystems: primary and secondary grown-in microdefects 

(formed due to the impurity-intrinsic point-defect elastic 

interaction and the interaction between intrinsic point 

defects, respectively) [7, 14]. 

 A detailed description of the heterogeneous mechanism 

formation of grown-in microdefects and its correspondence 

to the results of experimental researches are presented in the 

articles [7, 14]. 

4.3. The Diffusion Model for Formation of Grown-in 
Microdefects in Dislocation-Free Silicon Single Crystals 

 We propose a new diffusion model of the formation and 

transformation of grown-in microdefects. It is based on the 

experimental studies of undoped dislocation-free Si single 

crystals grown by the floating zone and Czochralski 

methods. The entire nomenclature of grown-in microdefects 

was investigated by transmission electron microscopy 

(TEM), standard patterns of grown-in microdefect 

macrodistribution depending on the thermal growth 

 

Fig. (1). Schematic diagram of the heterogeneous formation of grown-in microdefects in dislocation-free Si single crystals: (I) agglomerates 
of the interstitial type, (V) agglomerates of the vacancy type, (C) carbon, (O) oxygen, (i) Si self-interstitials, and (v) vacancies. 

 

Fig. (2). Scheme of the physical classification of grown-in microdefects: (I) agglomerates of the interstitial type, (V) agglomerates of the 
vacancy type, (C) carbon, (O) oxygen, (i) Si self-interstitials, (v) vacancies. 
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conditions were revealed, the transformation of grown-in 

microdefects during various technological treatments was 

analyzed, and the physical nature (sign of lattice strain) of all 

types of grown-in microdefects was determined [7, 14]. 

 The diffusion model combines the physical model (the 

heterogeneous mechanism for the formation and 

transformation of grown-in microdefects), the physical 

classification of grown-in microdefects, and mathematical 

models of the formation of primary and secondary grown-in 

microdefects (Fig. 3). In paragraphs 4 and 5 we consider 

mathematical models for the diffusion model of the 

formation of grown-in microdefects. 

5. DIFFUSION KINETIC OF HIGH-TEMPERATURE 
PRECIPITATION 

 The calculation of the precipitation is carried out within 

the framework of the classical theory of nucleation, growth 

and coalescence of precipitates. For the calculation of 

formation and growth of precipitates are used analytic and 

approximate calculations. In the case of analytical 

calculations applied solution of differential equations of the 

dissociative diffusion [57, 58]. In the case of approximate 

calculations, the solution is sought in the form of systems of 

interconnected discrete differential equations of quasi-

chemical reactions to describe the initial stages of nucleation 

of new phases and a similar system of continuous differential 

equations of the Fokker-Planck [59]. 

5.1. Mathematical Model of Formation Complex 
“Impurity-Intrinsic Point Defect” 

 The solution is sought within the model of dissociative 

diffusion-migration of impurities [60]. In this case, the 

difference from the decomposition phenomenon is that 

during diffusion (as a technological process), a diffusant is 

supplied to the sample from an external source, whereas in 

the case of decomposition it is produced by an internal 

source (lattice sites). The theoretical analysis in the same; 

however, in deformation of dissociative diffusion, one has to 

take into account the surface concentration, which decreases 

in the sample volume with time and along the coordinate. 

The time constant is determined by the migration mechanism 

in the sample volume, while the coordinate dependence is 

determined by the sample shape and the boundary conditions 

of the diffusion problem. 

 It is difficult to interpret diffusion in multicomponent 

systems because it is necessary to take into account the 

interaction of impurity atoms. Generally, one has to use 

numerical methods to solve the equations; simple analytical 

expressions, convenient for comparison with the 

experimental data, can be obtained only in certain 

approximations. The mechanism of complex formation can 

be different; however, independent of the nature of the forces 

leading to the formation of complexes, any model assumes 

the action radius of these forces to be small. In this case, in 

analysis of the migration of point defects, a complex can be 

considered as a point defect. 

 Let us write the formation of complexes as a quasi-

chemical reaction 

A + B AB  (26) 

 Then, the thermodynamic equilibrium condition between 

the free impurities A and B and the impurity bound into AB 

complexes can be written in the form 

 

Fig. (3). Diffusion model of grown-in microdefects formation. 
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μA + μB = μAB  (27) 

where μA  and μB  are the chemical potentials of free 

impurities and μAB  is the chemical potential of complexes. 

 If the total concentration of A and B impurities ( NA ,NB ) 

is low in comparison with the concentration of the main 

material, μAB = lnNAB  in this approximation, and the 

equilibrium condition (27) can be written as 

(NA Q)(NB Q)

Q
= k(T )  (28) 

where Q is the concentration of complexes and k(T) is the 

constant of the complex formation reaction, which is 

temperature-dependent (at constant pressure) [61]. At k = 0, 

the impurity is totally bound into complexes (strong complex 

formation). 

 One should take into account that, in the diffusion 

equations written with allowance for the complex formation, 

the total impurity flux is the sum of the free impurity flux 

and the flux of the impurity bound into complexes [61]: 

NA

t
= DA

2 (NA Q)

x2
+ DQ

2Q

x2
 (29) 

NB

t
= DB

2 (NB Q)

x2
+ DQ

2Q

xx
 (30) 

where DA , DB  and DQ  are the diffusion coefficients of the 

free components A and B and complexes, respectively; x is 

the coordinate (crystal length); and t is time. 

 The diffusion coefficient of complexes depends on the 

mechanism of complex formation and the type of their 

components. In particular, if a complex consists of two 

interacting atoms, the diffusion coefficient DQ  is much 

smaller than the corresponding diffusion coefficients of these 

atoms, DA  and DB . Therefore, assuming the complexes to 

be low-mobile, one can neglect the last terms in Eqs. (29) 

and (30): 

NA

t
= DA

2 (NA Q)

x2
 (31) 

NB

t
= DB

2 (NB Q)

x2
 (32) 

 Complexes are immobile; hence, the boundary conditions 

are written for the free impurity. Since the equilibrium 

settling time for the complexes and free impurity is much 

shorter than the characteristic diffusion time, the total 

impurity concentration can be set as the initial condition. 

 Vas’kin and Uskov [61] considered the problem of 

successive diffusion of a component A into a sample singly 

doped with a component B, taking into account the complex 

formation at the initial and boundary conditions: 

NA (x, 0) = 0

NB (x, 0) = NB ( )

NA (0, t) Q(0, t) = HA (0)

x
NB (x, t) Q(x, t)[ ]x=0 = 0

 (33) 

 In this case, the diffusion equation has the form 

1

2
NA NB k + k2 + 2k(NA + NB ) + (NA NB )

2
+ 2 NA

'
= 0

1

2
NB NA k + k2 + 2k(NA + NB ) + (NA NB )

2
+ 2 d 2NB

'
= 0

 (34) 

where =
x

2 DA t
 is the Boltzmann substitution, primes 

denote differentiation with respect to  and d 2 =
DA

DB

. 

 The solution to the system of equations (34) with the 

corresponding boundary conditions (diffusion of the 

impurity A from a constant source into a semiconductor that 

is homogeneously doped with the impurity B; the impurity B 

does not evaporate) in the case of strong complex formation 

(k = 0) is [61]: 

NA =
NB1 + HA (0) 1

erf ( / dA )

erf ( 0 / dA )
, < 0

0, > 0

 (35) 

NB =

NB1, < 0

NB0 (1
erfc( d)

erfc( 0d)
), > 0

 (36) 

where 

NB1 =
NB0e

0d
2

0derfc( 0d)
,  (37) 

0  is derived from the equation 

e 0
2 (1 d2 )erf ( 0 )

erfc( 0d)
=
NA0

NB0

 (38) 

 Let us rewrite the system of equations (28)-(30) for the 

diffusion impurity kinetics of mobile complexes in terms of 

total components, NA = HA +Q  and NB = HB +Q : 

dA
2 (NA Q) + dQ

2Q + 2 NA
'
= 0  (39) 

dB
2 (NB Q) + dQ

2Q + 2 NB
'
= 0  (40) 

(NA Q)(NB Q) = k(T )Q  (41) 

 In Eqs. (35)-(41) and below, dA
2
= DA;dB

2
= DB;dQ

2
= DQ . 

In Eqs. (33)-(41) and below, HA  and HB  are the 

concentrations of the free impurities A and B and NA0  and 

NB0  are the impurity concentrations at the interface. 
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 Note that the solution to the system of equations is 

considered for the three cases that are most often met in 

practice: successive distribution, simultaneous diffusion, and 

interdiffusion. Under the conditions of our physical model, 

we can speak about successive diffusion, at which the 

condition of zero flux of one of the components (located at 

the initial instant in the sample bulk) is set at the interface. In 

this case, the boundary conditions have the form 

HA =0
= HA (0); HA =

= HA ( )

dB
2HB

'
+ dQ

2 Q '

=0
= 0; HB =

= HB ( )
 (42) 

 Generally, the system of equations (39)-(41) with the 

boundary conditions (42) does not have an analytical 

solution; therefore, to analyze the shape of the impurity 

profiles, one has to analyze the limiting cases. Let us 

consider the approximation of strong complex formation (k = 

0), which physically means that the A + B Q  reaction is 

significantly shifted toward complex formation. In addition, 

at k = 0, it follows formally from the system of equations 

(39)-(41) that the concentration of at least one of the free 

components is zero; i.e., HA = 0  or HB = 0  (the impurity is 

completely bound into complexes). 

 The solution to the problem of diffusion of a component 

A in a semi-infinite sample homogeneously doped with a 

component B, with the absence of evaporation of the 

component B from the sample and the presence of the free 

component A at the sample boundary, has the form [60]: 

HA = NA Q =
NA (0) NB1( ) 1

erfc( / dA )

erfc( 0 / dA )
, 0

0, > 0

 (43) 

HB = NB Q =

0, 0

NB ( ) 1
erfc( / dB )

erfc( 0 / dB )
, > 0

 (44) 

Q =

NB1, 0

NB1

erfc( / dQ )

erfc( 0 / dQ )
, < 0

 (45) 

NB1S1( 0 / dQ ) = NB ( )S1( 0 / dB )

NB1S1( 0 / dQ ) = NA (0) NB1{ }S2 ( 0 / dA )
 (46) 

where 

S1(x) =
exp( x2 )

xerfc(x)
;S2 (x) =

exp( x2 )

xerf (x)
;NA (0) NB1 = HA (0).  

 Under physical-model conditions (heterogeneous 

mechanism of grown-in microdefect formation), we assume 

that the component A is the background impurity (oxygen O 

or carbon C) and the component B is intrinsic point defects 

(vacancies V or interstitials I). For the vacancy and 

interstitial mechanisms, we consider, respectively, the 

oxygen+vacancy (O+V) and carbon+interstitial (C +I) 

interactions. 

 The solution to Eqs. (37) and (38) has a physical meaning 

(NB1 ~ 10
12...1014cm 3 )  only at 0, 01 . Note that, in the 

approximation of strong complex formation, 0  is 

interpreted as the front boundary of the complex formation 

reaction. The calculations performed in the framework of 

this approximation have demonstrated that the edge of the 

reaction front of the formation of a complex (i.e., the 

“oxygen+vacancy” and “carbon+interstitial silicon atom” 

complex) is located at a distance of ~3·10
-4

 mm from the 

crystallization front [57]. Since x is the crystal length and 

x = 0  is the position of the crystallization front, we can 

conclude that complex formation occurs near the 

crystallization front. Detailed calculations are presented in 

the articles [57, 58]. 

5.2. Mathematical Model for the Formation of 
Precipitates 

 Let us consider a system of a growing undoped 

dislocation-free silicon single crystal. The concentrations of 

all point defects at the crystallization front are assumed to be 

equilibrium, and both the vacancies and the intrinsic 

interstitial silicon atoms are present in comparable 

concentrations [62]. During cooling of the crystal after 

passing through the diffusion zone, an excessive 

(nonequilibrium) concentration of intrinsic point defects 

appears. Excess intrinsic point defects disappear on sinks 

whose role in this process is played by uncontrollable 

(background) impurities of oxygen and carbon [14]. In real 

silicon crystals, the concentrations of carbon and oxygen 

impurities are higher than the concentrations of the intrinsic 

point defects. The formation of complexes between the 

intrinsic point defects and impurities is governed, on the one 

hand, by the fact that both the intrinsic point defects and the 

impurities are sources of internal stresses in the lattice 

(elastic interaction) and, on the other hand, by the Coulomb 

interaction between them (provided the defects and the 

impurities are present in the charged state). The 

mathematical model under consideration allows for the 

elastic interaction and the absence of the recombination of 

intrinsic point defects in the high-temperature range [44]. 

The concentrations of intrinsic point defects Ci,v r, t( )  in the 

growing crystal satisfy the diffusion equation 

Ci,v

t = Di,v Ci,v Cie,ve( )  where r is the coordinate and t 

is the time. In the vicinity of the sinks (oxygen and carbon 

atoms), the concentration of intrinsic point defects Cie,ve  is 

kept equilibrium, whereas the diffusion coefficients Di,v  and 

the concentrations Cie,ve  of intrinsic point defects decrease 

exponentially with decreasing temperature. Under these 

conditions, the formation of microvoids and interstitial 

dislocation loops is possible only at significant 

supersaturations of intrinsic point defects, which take place 

at a temperature T = Tm 300K  (where Tm  is the 

crystallization temperature) [10]. For the formation of 

precipitates in the high-temperature range T ~ 1683…1403 K 

has been calculated using the model of dissociative 

diffusion. This approximation is valid at the initial stages of 
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the formation of nuclei, when their sizes are small and the 

use of Fokker-Planck continuity differential equations is 

impossible. The calculations performed in the framework of 

this approximation have demonstrated that the edge of the 

reaction front of the formation of a complex (i.e., the 

“oxygen+vacancy” and “carbon+interstitial silicon atom” 

complex) is located at a distance of ~3·10
-4

 mm from the 

crystallization front [57]. This spacing represents a diffusion 

layer in which an excessive concentration of intrinsic point 

defects appears because the recombination of these defects at 

high temperatures is absent. 

 Now, we consider the modern approach based on solving 

systems of coupled discrete differential equations of quasi-

chemical reactions for the description of the initial stages of 

the formation of nuclei of new phases and a similar system 

of Fokker-Planck continuity differential equations. The 

grown-in microdefects are treated as clusters of particles of 

different types, so that their formation and decay can be 

represented as a reaction involving random processes of 

attachment and detachment of particles X, 

An + X
g(n,r ,t ) An+1

An
d (n,r ,t ) An 1 + X

 (47) 

where An  is a cluster of the A  type, which consist of n  

particles of the X  type; g(n, r, t)  is the growth rate of the 

An  cluster and d(n, r, t)  is the decay rate of the An  cluster. 

The concentration of the An  clusters at the r  point is 

determined by the function f (n, r, t) . The change of this 

function with time is described by the system of discrete 

kinetic differential equations 

f (n, r, t)

t
= J(n, r, t) J(n +1, r, t), (n = 2, 3, ...,nmax )

J(n, r, t) = g(n 1, r, t) f (n 1, r, t) d(n, r, t) f (n, r, t)
 (48) 

 The conservation of the number of X particles is 

described by the equation 

f (1, r, t)

t
= J(2, r, t) J(n, r, t)

n=2

nmax

 (49) 

where nmax  is the maximum number of X  particles 

contained in the A  cluster. 

 By expanding the gradually n -dependent functions g,d  

and f  into a Taylor series in terms to the second order 

included, the system of discrete equations is represented by 

the continuity partial differential equation (the Fokker-

Planck equation) [63] 

f (n, r, t)

t
=

I(n, r, t)

n
 (50) 

 In this case, the flux of monomers in the space of n sizes 

is given by the formula 

I(n, r, t) = Af B
f

n
 (51) 

and the kinetic coefficients A and B are described by the 

expressions 

A = g d
B

n
,B =

g + d

2
 (52) 

 When solving the system of equations (48) and (50), the 

fluxes J and I are joined at the point n = nmin . Then, the law 

of conservation of the number of particles (49) is 

transformed into the form 

f (1, r, t)

t
= J(2, r, t) J(n, r, t) I(n, r, t)dn

nmin

nmax

n=2

nmin 1

 (53) 

 Equation (50) represents a diffusion drift equation that 

describes the evolution of the distribution function f in the 

space of n sizes. The system of equations (48)-(53) makes it 

possible within a unified model to consider the processes of 

nucleation and the subsequent growth of the clusters. The 

conventional boundary separating small and large clusters is 

considered to be n = nmin , which, in the calculations, is 

assumed to fall in the range from 10 to 20. This quantity 

represents the boundary between the range of sizes 

( n > nmin ) in which the thermodynamic approach to the 

description of the physical processes can be considered valid 

and the range of sizes ( n < nmin ) in which the atomic nature 

of these processes must be taken into account. 

 In order to describe the kinetics of the simultaneous 

nucleation and growth (dissolution) of a new phase particles 

of several types in a supersaturated solid solution of an 

impurity in silicon, it is necessary to consider a system 

consisting of oxygen and carbon atoms, vacancies, and 

intrinsic interstitial silicon atoms. The interaction in this 

system during cooling of the crystal from 1683 K results in 

the formation of oxygen and carbon precipitates [14]. In 

order to perform the computational experiments and to 

interpret their results, it is necessary to carry out a 

dimensional analysis of the kinetic equations and the 

conservation laws with the use of characteristic time 

constants and critical sizes of defects. This will make it 

possible to perform a comparative analysis of the joint 

evolution of oxygen and carbon precipitates and to optimize 

the computational algorithm for the numerical solution of the 

equations. 

 The nucleation and evolution of a complex system of 

grown-in microdefects (which consists of oxygen and carbon 

precipitates) during cooling of the crystal are described by 

the systems of coupled differential equations (48)-(53) for 

each type of defect. These systems are related by the laws of 

conservation of point defects, which determine the current 

values of their concentrations in the crystal and affect the 

rates of growth and dissolution of clusters of all types. For 

the case of a thin plane-parallel crystal plate of a large 

diameter, when the conditions in the plane parallel to the 

surface of the crystal can be considered to be uniform and 

the diffusion can be treated only along the normal to the 

surface (the z coordinate axis), the mass balance of point 

defects in the crystal is described by the system of diffusion 
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equations for intrinsic interstitial silicon atoms, oxygen 

atoms, carbon atoms, and vacancies: 

Co

t
= Do

2Co

z2
Co

SiO2

t

Cc

t
= Dc

2Cc

z2
Cc

SiC

t

Ci

t
= Di

2Ci

z2
+

Ci
SiO2

t

Ci
SiC

t

Cv

t
= Dv

2Cv

z2
Cv

SiO2

t
+

Cv
SiC

t

 (54) 

 In the system of equations (54), we took into account that 

the oxygen precipitates serves as sinks for oxygen atoms and 

vacancies and as sources of interstitial silicon atoms. Then, 

we can write the following equations: 

Co
SiO2 = no fSiO2 (no , z, t) + no fSiO2 (no , z, t)dno

no
min

no
max

no=2

no
min 1

 (55) 

 At the same time, the carbon precipitates, in turn, also 

serve as sinks for carbon atoms and interstitial silicon atoms 

and as sources for vacancies. Therefore, we can write 

Cc
SiC

= nc fSiC (nc , z, t) + nc fSiC (nc , z, t)dnc
nc
min

nc
max

nc=2

nc
min 1

 

Cv
SiC

= vCc
SiC ,Ci

SiC
= i Cc

SiC
 (56) 

 In the general case, the proportionality factors 

v , i , v , i  can depend on the quantities no ,nc  and are 

determined by the conditions of thermodynamic equilibrium 

[64]. Moreover, in the system of equations (54), the 

recombination of pairs of intrinsic interstitial silicon atoms 

and vacancies is ignored [14]. 

 The corresponding system of coupled Fokker-Planck 

equations can be transformed into the dimensionless form 

 

fSiO2
=

ISiO2

O

fSiC
=

t0
tc

ISiC

c

 (57) 

where =
t

to
 is the dimensionless time. The time constants 

in the system of equations (57) are given by the expressions 

tO = (nO
cr ,0 )2 / gSiO2

0 ; tc = (nc
cr ,0 )2 / gSiC

0
, where the critical 

growth rates of the precipitates are defined as 

gSiO2
0

= NO
0

O exp( Gact
SiO2 / kT ); gSiC

0
= NO

0
c exp( Gact

SiC / kT ) . 

The normalized sizes of the precipitates are determined in 

the system of equations (57) as follows: 

 O = nO / nO
cr ,0 ; c = nc / nc

cr ,0
, where nO

cr ,nc
cr

 are the 

normalizing critical sizes of the precipitates. The quantities 

NO
0
= 4 (rO

cr ,0 )2 SiO2
CO

eq;Nc
0
= 4 (rc

cr ,0 )2 SiCCc
eq

 are the  

 

numbers of particles in the vicinity of the corresponding 

precipitates with critical sizes. The size distribution functions 

of the precipitates in the system of equations (57) are 

normalized to the initial concentrations of the corresponding 

nucleation centers: 

fSiO2 =
fSiO2
fSiO2
0 ; fSiC =

fSiC
fSiC
0  (58) 

 The fluxes of particles on the right-hand sides of the 

system of equations (57) are described by the expressions 

 

ASiO2 = (gSiO2 dSiO2 )nO
cr ,0

BSiO2

O

;ASiC = (gSiC dSiC )nO
cr ,0 BSiC

O

;  (59) 

in which the following notation is used for the normalized 

kinetic coefficients: 

ASiO2 = (gSiO2 dSiO2 )nO
cr ,0

BSiO2

O

;ASiC = (gSiC dSiC )nO
cr ,0 BSiC

O

;  (60) 

 

BSiO2 =
gSiO2 + dSiO2

2
;BSiC =

gSiC + dSiC
2

 (61) 

 The normalized rates of growth and dissolution of the 

precipitates in expressions (60) and (61) take the form 

 

gSiO2 =
gSiO2
gSiO2
0 ; gSiC =

gSiC
gSiC
0 ;dSiO2 =

dSiO2
gSiO2
0 ;dSiC =

dSiC
gSiC
0  (62) 

 The critical size of the precipitates can be determined 

according to [64, 65] from the expressions 

rO
cr
=

2 uVp

kT ln(S0Si i Sv
v ) 6μ uVp

 (63) 

rC
cr
=

2 uVp

kT ln(S Si
i Sv

v ) 6μ uVp

 (64) 

where So =
Co Co

eg ,Sc =
Cc

Cc
eg ,Si =

Ci

Ci
eg ,Sv =

Cv

Cv
eg  

are the supersaturations of the oxygen atoms, carbon atoms, 

intrinsic interstitial silicon atoms, and vacancies, 

respectively;  is the density of the surface energy of the 

interface between the precipitate and the matrix; μ  is the 

shear modulus of silicon;  and  are the relative linear and 

volume misfit strains of the precipitate and the matrix, 

respectively; i  and v  are the fractions of the intrinsic 

interstitial silicon atoms and vacancies per impurity atom 

attached to the precipitate, respectively; Vp  is the molecular 

volume of the precipitate; and u = (1+ i x + vx)
1 (
1+

1+
)3 . 

 The number of impurity atoms in the compressed 

precipitates with the radii rO  and rC  is determined according 

to [65] from the formula 

nO,C =
4 rO,C

3 (1+ i x + vx)

3Vp

(
1+

1+
)3  (65) 
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where Vp  is the volume of the precipitate; x  is the fraction 

of impurity atoms per intrinsic defect, x  2, i  , v  . 

 When analyzing the evolution of precipitates during 

cooling of the crystal in the course of its growth, the 

important parameters are the characteristic constants in the 

size space: the critical sizes of the corresponding precipitates 

and the related characteristic time constants, which specify 

the scale of changes in the size distribution function of 

microdefects with time. The time constants in the system of 

equations (57) allow one to calculate the normalizing sizes 

nO
cr ,0

 and nC
cr ,0

; for this purpose, the supersaturations 

corresponding to the complete inclusion of the oxygen and 

carbon atoms in the precipitates are substituted into 

expressions (63) and (64). In each of these expressions, the 

supersaturations of the remaining point defects are assumed 

to be equal to unity. 

 An increase in the supersaturations of point defects 

(oxygen and carbon atoms, intrinsic interstitial silicon atoms, 

and vacancies) leads to a decrease in the corresponding 

critical size of the precipitates and favors an acceleration of 

their growth. A decrease in the characteristic times also leads 

to an acceleration of the precipitation with an increase in the 

supersaturations of the point defects. The opposite trend is 

observed when the crystal is cooled from the crystallization 

temperature. 

 An important property of the characteristic times is their 

inverse proportionality to the products of the characteristics 

of point defects (diffusion coefficients and equilibrium 

concentrations): 

to ~ (DoCo
eq ) 1 , tc ~ (DcCc

eq ) 1  (66) 

 Since the product of the characteristics of point defects 

for oxygen atoms considerably exceeds the analogous 

product for carbon atoms, the rate of evolution of the size 

distribution function of the carbon precipitates should exceed 

the corresponding rate for oxygen precipitates. This means 

that the evolution of the microdefect structure of dislocation-

free silicon single crystal during cooling of the as-grown 

crystal is determined predominantly by the growth rate of the 

oxygen precipitates. Detailed quantitative information on the 

characteristics of the primary grown-in microdefects can be 

obtained by numerically calculating the system of equations 

(57). 

 The algorithm used for solving the problem of simulation 

of the simultaneous growth and dissolution of the oxygen 

and carbon precipitates due to the interaction of point defects 

during cooling of the crystal from the crystallization 

temperature is based on the monotonic explicit difference 

scheme of the first-order accuracy as applied to the Fokker-

Planck equations (57). Detailed calculations are presented in 

the articles [59]. 

 These calculations demonstrate that intrinsic point 

defects (vacancies and intrinsic interstitial silicon atoms) 

exert a significant influence on the dynamics of mass 

exchange and mass transfer of point defects between the 

oxygen and carbon precipitates. The absorption of vacancies 

by the growing oxygen precipitates leads to the emission of 

silicon atoms into interstitial positions. The intrinsic 

interstitial silicon atoms, in turn, interact with the growing 

carbon precipitates, which, in the process of growth, supply 

vacancies for growing oxygen precipitates. This interaction 

leads to such a situation that, first, the growth of the 

precipitates is suppressed more weakly because of the slower 

increase in the supersaturation of the intrinsic point defects 

in the bulk of the growing crystal and, second, the critical 

radius of the formation of carbon precipitates increases more 

slowly, which favors a more rapid growth of the carbon 

precipitates. 

 The higher rate of the evolution of the size distribution 

function for carbon precipitates can be associated with the 

higher mobility of interstitial silicon atoms as compared to 

vacancies in the high-temperature range. It can be assumed 

that the mutual formation and growth of oxygen and carbon 

precipitates result in a lower rate of the evolution of the size 

distribution function of the oxygen precipitates, regardless of 

their smaller critical size at the initial instant of time, owing 

to the effect of the carbon impurity. 

 The results of approximate calculations of the Fokker-

Planck partial differential equations correlate well with the 

results of the analytical solution of the equations in the 

consistent model of dissociative diffusion in the 

approximation of strong complex formation [60]. The main 

advantage of these two models is that they complement each 

other. In particular, the critical size distribution functions of 

the oxygen and carbon precipitates can be found only from 

the Fokker-Planck continuity differential equations, whereas 

the consistent model of dissociative diffusion in the 

approximation of strong complex formation has failed to 

obtain these functions. At the same time, the model of 

dissociative diffusion makes it possible to analyze the 

processes occurring in the diffusion region near the 

crystallization front. Of special note is the fact that these 

mathematical models, together with the experimental results 

obtained from the investigation of quenched crystals, have 

demonstrated that the nucleation processes occur very 

rapidly near the crystallization front. 

5.3. Model of Growth and Coalescence of Precipitates 

 In the classical theory of nucleation and growth of new-

phase particles, the process of precipitation in a crystal is 

treated as a first-order phase transition and the kinetics of 

this process is divided into three stages: the formation of 

new-phase nuclei, the growth of clusters, and the 

coalescence stage. 

 At the second stage of the precipitation process, clusters 

grow without a change in their number. This growth is 

accompanied by a considerable decrease in the degree of 

supersaturation of the solid solution. It is assumed that the 

growth kinetics of precipitates is described by the reversible 

scheme AiC + A Ai+1C , which corresponds to the growth 

of precipitates at the nucleation centers C  with a 

concentration Nc  that remains unchanged with time. The 

nucleation centers attach and detach monomers, which is 

described by the system of equations [66]: 
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dN0

dt
= k0NN0 + g1N1,

dNi

dt
= Ni kiN + gi( ) + gi+1Ni+1 + ki 1NNi 1,

dN

dt
= N kiNi + giNi ,

i=1i=0

 (67) 

where Ni  is the volume-average concentration of nucleation 

centers that attach i  particles, N  is the monomer 

concentration, kiN  is the rate of attachment of a monomer 

for a nucleation center, and gi  is the rate of detachment of a 

monomer for a nucleation center. At the initial instant of 

time, the system contains only monomers and nucleation 

centers. The growth of precipitates is limited by the 

monomer diffusion. The kinetic coefficients are given by the 

formula ki = 4 RiD , where Ri  is the radius of attachment of 

a free particle by a cluster consisting of i  particles and D  is 

the diffusion coefficient of a free particle. 

 The system of equations (67) obeys the law of 

conservation of nucleation centers Nc = Ni (t)
i=1

 and the 

law of conservation of the total number of particles, 

including both monomers and particles involved in 

precipitates, i.e., N 0( ) = N t( ) + iNi
i=1

, where N 0( )  is the 

monomer concentration at the initial instant of time. 

Therefore, the average number of particles at the nucleation 

centers can be represented in the form 

i =
iNi

i=0

Ni
i=0

=
N 0( ) N t( )

Nc

 (68) 

 For i >> 1  the process is described using the Fokker-

Planck equation. In accordance with the principle of detailed 

balance g i( ) = k i 1( )NECE i 1( ) CE i( ) k i( )NE , the 

Fokker-Planck equation takes the form [66]: 

C i, t)( )
t

= N t( ) NE( )
i
k i( )C i, t( )( ) + N t( ) + NE( )

2

2 i2
k i( )C i, t( )( )  (69) 

where NE  is the equilibrium concentration of monomers. 

 In the case of the diffusion-controlled precipitation, the 

mathematical expectation i t( )  can be described by the 

macroscopic equation corresponding to expression (69): 

di

dt
= k0 N NE( ) i t( ) + m( ) , (70) 

where k0 = 4 RiD , m  is the initial size of precipitates, and 

 is the parameter dependent on the cluster geometry. 

 Expressions (68) and (70) allow us to write the 

differential equation that describes the variation in the 

monomer concentration during the decomposition of the 

solid solution: 

dN t( )
dt

= k0Nc
1 N t( ) NE( ) N 0( ) + mNcN t( )( )  (71) 

 The kinetics of decrease in the monomer concentration, 

which is determined from the numerical solutions to the 

system of initial equations (67), coincides with that obtained 

from expression (71), to within the error of numerical 

methods. The solution of the system of initial equations (67) 

for real objects is nearly impossible due to the large 

dimension of the system of equations, whereas the solution 

of Eq. (71) presents no special problems [66]. 

 The kinetics of decrease in the monomer concentration as 

a result of the decomposition of the solid solution at m = 0  

can be written in the form 

N t( ) NE

N 0( ) NE

= exp Nc 1( ) N 0( ) NE( ) k0t
1

1  (72) 

 By numerically solving Eq. (71) simultaneously with Eq. 

(68), we can calculated the average radius of the precipitate 

at the growth stage: 

R t( ) =
3bi t( )
4

3  (73) 

 At the third stage of the precipitation process, when the 

particles of the new phase are sufficiently large, the 

supersaturation is relatively low, new particles are not 

formed and the decisive role is played by the coalescence, 

which is accompanied by the dissolution of small-sized 

particles and the growth of large-sized particles. The 

condition providing for changeover to the coalescence stage 

is the ratio u t( ) =
R t( )
Rcr t( )

1 , where Rcr t( )  is the critical 

radius of the precipitate. Under this condition, the precipitate 

is in equilibrium with the solution (
dR

dt
= 0 ). The precipitate 

grows at R t( ) > Rcr t( )  and dissolves at R t( ) < Rcr t( ) . With 

time, the critical radius Rcr t( )  increases and the number of 

particles per unit volume decreases [66]. The solution of the 

system of equations describing this process is possible only 

in the case where the supersaturation of the solute tends to 

zero. 

 Slezov and Kukushkin [67] showed that the 

crystallization of single-component melts is accompanied by 

the formation of temperature fields and that the precipitates 

of the new phase interact with each other through 

generalized temperature fields. The asymptotic solution to 

the system of equations describing this process is similar to 

the solution of the equations describing the diffusion 

isothermal coalescence [67] and becomes possible when the 

supercooling of the melt T = Tc T0  tends to zero (where 

Tc  and T0  are the average and equilibrium temperatures of 

the crystal, respectively [67]). 

 Let us consider a solid solution that contains single-

component spherical precipitates of a new phase with the 

initial size distribution function f0 (R) . The system 

containing the solid solution is thermally insulated and does 

not involve sources of a substance. Let the initial 
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temperature and the initial concentration of the solid solution 

be Tc (0)  and cc (0) , respectively. The solution is considered 

at the coalescence stage. 

 Since the system in which the solid solution decomposes 

is thermally insulated, the heat of the phase transition that 

releases in the course of the coalescence leads to an increase 

in the temperature of the entire system, which, in turn, leads 

to a change in the equilibrium concentration c0  [67]. In this 

case, the supersaturation will tend to zero more rapidly than 

in the case of isothermal coalescence, because the increase in 

the temperature results in an increase in the equilibrium 

concentration. This will lead to a decrease in the 

concentration gradient between the solution and the 

precipitation of the new phase, and, correspondingly, the 

growth rate of precipitates decreases. Consequently, the 

diffusion and thermal fields become self-consistent and the 

system of equations of the nonisothermal coalescence should 

involve both the mass balance equation and the heat balance 

equation. The system of equations describing the 

nonisothermal coalescence has the form [67] 

f R, t( )
t

+
R

f R, t( )dR / dt = 0, f0 R( ) = f R, 0( )  (74) 

Q Tc( ) = cc t( ) + f R, t( )R3 dR
0

 (75) 

Tc t( ) = Tc 0( ) +
L

cp t

f R, t( ) f0 R( ) R3 dR
0

 (76) 

where expression (74) is the equation of continuity in the 

space of sizes for the size distribution function of 

precipitates, expression (75) is the mass balance equation, 

expression (76) is the equation accounting for the amount of 

released heat, f0 (R)  is the initial size distribution function 

of precipitates, Tc 0( )  is the initial temperature of the solid 

solution, = 4 / 3  is the volume per atom in the 

precipitates of the new phase, Q Tc( )  is the total amount of 

the material in the precipitates and the solution, cc t( )  is the 

solute concentration in the solid solution, L  is the heat of 

the phase transition per atom of the precipitated phase, cp  is 

the heat capacity at constant pressure per unit mass of the 

solid solution, and t  is the density of the solid solution. 

The average temperature of the solid solution is a function of 

the amount of the material in the precipitates of the new 

phase; i.e., Eqs. (9) and (10) are related to each other. 

 In order for the system of equations (74)-(76) to be 

complete, it is necessary to find the dependence of the 

growth rate of precipitates dR / dt  on the radius R : 

dR

dt
= D

c

r
 (77) 

 Here, D  is the diffusion coefficient for the component 

forming the new phase; 
c

r
 is the concentration gradient of 

atoms at the precipitate boundary, which will be determined 

from the quasi-steady-state (the supersaturation is relatively 

low) solution of the diffusion equation written in the 

spherical coordinates 

2c

r2
+
2

r

c

r
= 0,  (78) 

with the boundary conditions [67] 

cr = cc (Tc ), cr=R = c R( ),D
c

r
= c R( ) cR( )  (79) 

where  is the specific boundary flux, which includes the 

rate of incorporation of the emission of atoms into the 

precipitate; cR  is the concentration of atoms in equilibrium 

with the precipitate of radius R ; and c R( )  is the 

concentration at the surface of the precipitate of the new 

phase. In the case of nonisothermal coalescence, the 

concentrations cc , c R( ), cR  are functions of the temperature 

Tc . The equation for the growth rate of a precipitate is 

obtained by solving Eq. (12) with the boundary conditions 

(79): 

dR

dt
=
2 D 3 c0 Tc( )
kTc D + R( )R2

R / Rk 1( )  (80) 

where c0 Tc( )  is the equilibrium concentration of the solute 

at the temperature Tc  and  is the surface tension at the 

interface between the precipitate of the new phase and the 

solid solution. It follows from expression (80) that there are 

two possible processes limiting the growth rate of the 

precipitate [67]. 

(1) The diffusion processes for D << R : 

 
dR

dt
=
2 D 2c0 Tc( )

kTcR
2 R / Rk 1( )  (81) 

(2) The processes occurring at the precipitate boundary 

for D >> R : 

 
dR

dt
=
2 D 3c0 Tc( )

kTcR
R / Rk 1( )  (82) 

 Equations (74)-(76) with either expression (81) or 

expression (82) form the complete system of equations that 

describe the process of nonisothermal decomposition of the 

solid solution at the stage of the coalescence. Slezov and 

Kukushkin [67] showed that, in closed systems in the 

absence of sources (sinks) of heat and matter, the 

dependences of the variations in the distribution functions 

for precipitates of the new phase over the sizes, their density, 

and the critical and average radii in the case of 

nonisothermal coalescence are identical to those observed in 

the case of isothermal coalescence. Only the constants 

dependent on the temperature are changed. Equations (74)-

(76), together with either expression (81) or expression (82), 

are solved using the method developed in [67]. In the general 

case, the size distribution function for precipitates has the 

following form: 
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f R, t( ) =
n t( )
Rcr t( )

P u( )  

u =
R t( )
Rcr t( )

 (83) 

P(u) =

16u exp
3u

u 2

u 2( )
5 , u < 2

0, u > 2

 (84) 

 The average size of precipitates at the stage of the 

coalescence is proportional to the cube root of time [67]: 

Rsr (t) = Rcr
3 t0( ) +

4D(t) t

9
3  (85) 

where D(t)  is the diffusion coefficient of impurity atoms, 

=
kT

N 0( ) ; Rcr t0( )  is the initial critical radius,  is 

the surface tension at the precipitate-solid solution interface, 

 is the atomic volume, and 

n t( ) =
Nc

t
t0

 (86) 

 Here, t0  is the initial critical time and Nc  is the initial 

concentration of precipitates. 

 Detailed calculations are presented in the articles [66]. 

The analysis was carried out under the assumption that 

precipitates grow at a fixed number of nucleation centers 

according to the diffusion mechanism of growth. The model 

corresponds to the precipitation uniform in the volume. An 

analysis of the results obtained and the data taken from [57, 

59] has demonstrated that the phase transition occurs 

according to the mechanism of nucleation and growth of a 

new phase so that these two processes are not separated in 

time and proceed in parallel. 

 The condition providing changeover to the stage of the 

coalescence is written in the form R t( ) Rcr t( ) , which is 

satisfied for large-sized crystals at the temperature T  1423 

K. Taking into account the computational errors, this 

temperature for large-sized crystals corresponds to the initial 

point of the range of the formation of microvoids (at Vg = 0.6 

mm/min). In this range, all impurities are bound and there 

arises a supersaturation with respect to vacancies, which is 

removed as a result of the formation of microvoids. With a 

change in the thermal conditions of the growth (for example, 

at Vg = 0.3 mm/min [10]), there arises a supersaturation with 

respect to interstitial silicon atoms, which leads to the 

formation of interstitial dislocation loops. In this case, the 

condition R t( ) Rcr t( )  is satisfied at T  1418 K. 

Consequently, the stage of the coalescence in large-sized 

silicon single crystals begins at temperatures close to the 

temperatures of the formation of clusters of intrinsic point 

defects (depending on the thermal growth conditions, these 

are microvoids or interstitial dislocation loops). 

 The simultaneous nucleation and growth of particles of 

the new phase (oxygen and carbon precipitates) during 

cooling of as-grown silicon crystals leads to a strong 

interplay between the processes of evolution of these two 

subsystems of grown-in microdefects. The absorption of 

vacancies by growing oxygen precipitates results in the 

emission of silicon atoms in interstitial sites. In turn, the 

intrinsic interstitial silicon atoms interact with growing 

carbon precipitates, which, in the course of their growth, 

supply vacancies for growing oxygen precipitates. This 

interplay between the processes leads to an accelerated 

changeover of the subsystems of oxygen and carbon 

precipitates to the stage of the coalescence as compared to 

the independent evolution of these two subsystems. 

 The change in the thermal conditions for the growth of 

small-sized FZ-Si single crystals (high growth rates and axial 

temperature gradients) leads to the fact that the stage of the 

coalescence begins far in advance (at T Tm 20K ). The 

results of theoretical calculations have demonstrated that a 

decrease in the concentrations of oxygen and carbon in 

small-sized single crystals leads to a further decrease in the 

time of occurrence of the growth stage of precipitates. The 

change in thermal conditions of crystal growth (in particular, 

an increase in the growth rate and in the axial temperature 

gradient in the crystal) substantially affects the stage of the 

growth of precipitates. In turn, the decrease in the time of 

occurrence of the growth stage of precipitates is associated, 

to a lesser extent, with the decrease in the concentration of 

impurities in crystals. Eventually, these factors are 

responsible for the decrease in the average size of the 

precipitates. 

 Kinetic model of decomposition of solid solutions of 

oxygen and carbon impurities not only allows one to 

simulate the processes of precipitation during cooling of the 

as-grown silicon crystal to a temperature of 300 K but also 

adequately describes the available experimental data on the 

oxygen and carbon precipitation. The kinetic model of 

growth and coalescence of oxygen and carbon precipitates in 

combination with the kinetic models describing their 

formation [57, 59] represents a unified model of the process 

of precipitation in dislocation-free silicon single crystals. In 

the future, the mathematical apparatus of this model will 

make it possible to take into account and analyze interactions 

of intrinsic point defects not only with oxygen and carbon 

background impurities but also with other impurities (for 

example, transition metals, nitrogen, hydrogen, etc.), as well 

as interactions of the impurity-impurity type. 

6. DIFFUSION KINETIC OF FORMATION OF THE 
MICROVOIDS AND INTERSTITIAL DISLOCATION 

LOOPS 

 As mentioned earlier the defect formation processes in a 

semiconductor crystal, in general, and in silicon, in 

particular, have been described using the model of point 

defect dynamics; in this case, the crystal has been considered 

a dynamic system and real boundary conditions have been 
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specified [10, 41-43, 45]. The mathematical model of point 

defect dynamics in silicon quantitatively explains the 

homogeneous mechanism of formation of microvoids and 

interstitial dislocation loops and provides the basis for the 

understanding of the relation between the defect crystal 

structure and the processes occurring in the melt [10]. 

 However, the model of point defect dynamics has not 

been used for calculating the formation of interstitial 

dislocation loops and microvoids under the assumption that 

the recombination of intrinsic point defects is absent in the 

vicinity of the crystallization front. This fact is evidenced by 

experimental and theoretical investigations [14, 44]. 

6.1. Kinetics of Formation of Microvoids 

 The experimentally determined temperature range of the 

formation of microvoids in crystals with a large diameter is 

1403…1343 K [34]. In this respect, the approximate 

calculations for the solution in terms of the model of point 

defect dynamics were performed at temperatures in the range 

1403…1073 K. The computational model uses the classical 

theory of nucleation and formation of stable clusters and, in 

strict sense, represents the size distribution of clusters 

(microvoids) reasoning from the time process of their 

formation and previous history. 

 The system of equations is solved using the exact space-

time discretization. The algorithm involves the solution to 

the equation Vg =
dh

dt
 for the crystal growth rate with the 

simultaneous solution to Eqs. (1)-(4) with the boundary and 

initial conditions (7)-(11). The size distribution is determined 

from the solution to Eqs. (3) and (4) for the corresponding 

type of grown-in microdefects (microvoids or A-

microdefects). The recombination factor in the calculation 

was taken to be kIV = 0  [44]. 

 In the high-temperature range (1682 K < T < 1403 K, the 

growth parameter is Vg/G > crit), there occur nucleation and 

growth of impurity precipitates [14]. In this range, the 

supersaturation of intrinsic point defects (vacancies) is low 

and, hence, the nucleation rate of microvoids is negligible. 

At T  1403 K, the supersaturation increases, which leads to 

an increase in the nucleation rate of microvoids. After the 

formation of microvoids, their growth is accompanied by a 

rapid consumption of vacancies. As a result, the 

supersaturation decreases and the nucleation rate of 

microvoids decreases drastically. The nucleation dominates 

in a narrow temperature range, and, therefore, the nucleation 

of microvoids outside the zone of their formation is ignored. 

Moreover, since the growth rate of microvoids decreases 

sharply with an increase in their size and the corresponding 

decrease in the vacancy concentration, the growth of 

microvoids outside the nucleation zone is also disregarded. 

 The calculations were carried out in the framework of the 

model of point defect dynamics, i.e., for the same crystals 

with the same parameters as in already the classical work on 

the simulation of microvoids and interstitial dislocation 

loops (A-microdefects) [10]. According to the analysis of the 

modern temperature fields used when growing crystals by 

the Czochralski method, the temperature gradient was taken 

to be G = 2.5 K/mm [10]. The simulation was performed for 

crystals 150 mm in diameter, which were grown at the rates 

Vg = 0.6 and 0.7 mm/min. These growth conditions 

correspond to the growth parameter Vg/G > crit. 

 Detailed calculations are presented in the articles [68]. 

Our results somewhat differ from those obtained in [10]. 

These differences are as follows: (i) the nucleation rate of 

microvoids at the initial stage of their formation is low and 

weakly increases with a decrease in the temperature and (ii) 

a sharp increase in the nucleation rate, which determines the 

nucleation temperature, occurs at a temperature T ~ 1333 K. 

These differences result from the fact that the recombination 

factor in our calculations was taken to be kIV = 0 . For 

kIV 0 , consideration of the interaction between impurities 

and intrinsic point defects in the high-temperature range 

becomes impossible, which is accepted by the authors of the 

model of point defect dynamics [10]. In this case, in terms of 

the model, there arises a contradiction between the 

calculations using the mathematical model and the real 

physical system, which manifests itself in the ignoring of the 

precipitation process [10]. 

 An increase in the crystal growth rate only insignificantly 

decreases the critical pore radius and weakly affects the 

nucleation temperature. As is known, in order to prevent the 

formation of microvoids, the cooling rate should be 

increased above 40 K/min [69]. These conditions are 

fulfilled when growing small-sized silicon crystals. For real 

growth rates of large-sized single crystals (with a diameter of 

larger than 80 mm), the formation of microvoids cannot be 

suppressed [70]. 

6.2. Kinetics of Formation of Interstitial Dislocation 
Loops (A-Microdefects) 

 The computational experiment was performed similarly 

to the calculations of the formation of microvoids. The 

simulation was performed for crystals 150 mm in diameter, 

which were grown at the rates Vg = 0.10 and 0.25 mm/min 

for the temperature gradient G = 2.5 K/mm. These growth 

conditions correspond to the growth parameter Vg/G < crit. 

 With allowance made for the experimental data on the 

range of the formation of A-microdefects, the calculations 

were carried in the range from 1223 to 1023 K [10]. It is 

assumed that, in the high-temperature range (1682 K < T < 

1223 K, the growth parameter is Vg/G < crit), there occur 

nucleation and growth of impurity precipitates. In this range, 

the supersaturation of intrinsic point defects (intrinsic 

interstitial silicon atoms) is low and, hence, the nucleation 

rate of A-microdefects is negligible. At T  1223 K, the 

supersaturation increases, which leads to an increase in the 

nucleation rate of A-microdefects. After the formation of A-

microdefects, their growth is accompanied by a rapid 

consumption of intrinsic interstitial silicon atoms. As a 

result, the supersaturation decreases and the nucleation rate 

of A-microdefects decrease drastically. Consequently, the 

nucleation dominates in a narrow temperature range, and, 

therefore, the nucleation of A-microdefects outside the zone 

of their formation is ignored. Moreover, since the growth 
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rate of A-microdefects decreases sharply with an increase in 

their size and the corresponding decrease in the 

concentration of intrinsic interstitial silicon atoms, the 

growth of A-microdefects outside the nucleation zone is also 

disregarded. 

 Detailed calculations are presented in the articles [68]. 

The temperature of the formation of A-microdefects 

corresponds to ~1153 K. An increase in the crystal growth 

rate weakly decreases the critical radius of A-microdefects 

and slightly affects the nucleation temperature. An increase 

in the crystal growth rate leads to an almost twofold decrease 

in the concentration of introduced defects. 

 The data of the computational experiment on the 

determination of the microvoid concentration correlate well 

with the experimentally observed results (10
4
-10

5
 cm

-3
) [36]. 

For the A-microdefects, for which the concentration 

according to the experimental data is ~10
6
…10

7
 cm

-3
 [14], 

the discrepancy is as large as three orders of magnitude. This 

can be explained by the fact that, unlike microvoids, which 

are formed only through the coagulation mechanism, the 

formation of A-microdefects occurs according to both the 

coagulation mechanism and the mechanism of prismatic 

extrusion (deformation mechanism) [14]. The results of the 

calculations suggest that the main contribution to the 

formation of A-microdefects is made by the mechanism of 

prismatic extrusion when the formation of interstitial 

dislocation loops is associated with the relieving of stresses 

around the growing precipitate. Consequently, the impurity 

precipitation processes that proceed during cooling of the 

crystal from the crystallization temperature are fundamental 

(primary) in character and determine the overall defect 

formation process in the growth of dislocation-free silicon 

single crystals. 

 The calculations of the formation of microvoids and 

interstitial dislocation loops (A-microdefects) demonstrated 

that the above assumptions do not lead to substantial 

differences from the results of the previous calculations in 

terms of the model of point defect dynamics. This 

circumstance indicates that the mathematical model of point 

defect dynamics can be adequately used on the basis of the 

physical model in which the impurity precipitation process 

occurs before the formation of microvoids or interstitial 

dislocation loops. Consequently, the model of the dynamics 

of point defects can be considered as component part of the 

diffusion model for formation grown-in microdefects. 

Moreover, the significant result of the calculations is the 

confirmation of the coagulation mechanism of the formation 

of microvoids and the deformation mechanism of the 

formation of interstitial dislocation loops. 

6.3. Model of the Vacancy Coalescence 

 We have proposed a new alternative mathematical model 

of formation secondary grown-in microdefects (microvoids) 

in dislocation-free silicon single crystals. It is shown that 

microvoids are formed in a narrow temperature range of 

1403…1343  [70]. This is caused by a sharp decrease in the 

concentration of background impurity which does not form 

agglomerates (they arise in the temperature range of 

1683…1423 K upon crystal cooling [59]). 

 This model explains the excess of nonequilibrium 

vacancies upon crystal cooling during growth and the 

absence of microvoids in crystals with small diameters. A 

possible reason for the excess of nonequilibrium vacancies is 

the bonding of oxygen atoms into grown-in microdefects 

((I+V)-microdefects) with a decrease in temperature to  < 

1423 K. Under such conditions, the decay of the 

supersaturated solution of vacancies and vacancy diffusion 

occur simultaneously in the first stage. When most vacancies 

are spent on the microvoid formation and the concentration 

of nonequilibrium vacancies becomes fairly low, the 

diffusion of the remaining nonequilibrium vacancies to the 

surface and into the bulk of the crystal is accompanied by 

microvoid coalescence. When this second stage is over, all 

excess vacancies emerge on the crystal surface [70]. 

 In the first stage, this system can be described by the 

equations [70]: 

n

t
= D

2n

x2
4 NDrn  (87) 

r2

t
=
2n

NL

D  (88) 

where n  is the nonequilibrium-vacancy concentration, D  is 

the vacancy diffusion coefficient, r  is the microvoid radius, 

NL  is the vacancy concentration in a microvoid (or inverse 

volume per vacancy), and N  is the experimentally observed 

microvoid concentration [34]. 

 The boundary and initial conditions have the form 

n
x=0

= 0, n
t=0

=
n0 , at x

0, at x >
, r

t=0
= 0, d

t=0
= .  

 The condition n
x=0

= 0  assumes that the excess 

vacancies are very rapidly absorbed on the surface [70]. The 

surface (  = 0) is arbitrarily considered to be the crystal layer 

corresponding to  = 1403K. The condition of infinite crystal 

diameter ( d
t=0

= ) implies that the drain of vacancies from 

the crystal bulk to the lateral surface is neglected. 

 To solve the problem for the first stage, we will substitute 

(88) into (87), integrate over time, and introduce new 

variables: 

x = μ , t = , r2 = q  (89) 

where μ6
=
NL

2n0

1

(8 3 N )2
, =

μ2

D
, = μ 4 (8 3 N ) 2 .  

 In this case, Eqs. (87) and (88) become dimensionless: 

q
=

2q
2 q3/2 + f ( )  (90) 

n = n0
q

 (91) 
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where 

f ( ) =
1, at

0, at >
, =

μ
 (92) 

with the boundary and initial conditions 

q
=0

= 0, q
=0

= 0, q
=

= 0 . The function f ( )  is 

found by substituting the initial conditions into Eq. (90). 

 The first stage duration I  depends on the drift time of 

most excess vacancies to pores, which is found from Eq. (90) 

with the exclusion of the diffusion term 
2q

2 , which is 

approximately unity. One necessary condition of pore 

formation in a layer of thickness  is the limitation 

I S =
2

. In accordance with this condition, the pore 

formation time should not exceed the time that the vacancy 

drifts to the surface. The characteristic times of the first stage 

in the dimensional form can be written as 

tI = I =
μ2

D
 (93) 

tS = S =

2

D
 (94) 

 The stationary profile pores after the first stage 

( q / 0)  can be determined from the equation 

2q
2 q3/2 + f ( ) = 0  (95) 

with the boundary conditions q
=0

= 0, q = 0.  The 

parameter determining the shape of the pore profile is the 

quantity : the ratio of the characteristic time it takes the 

vacancy to drift to the surface to the characteristic pore 

formation time. The solutions to Eq. (95) for the three ranges 

of change in the coordinate  have the form 

0 max ,
dq

2
2

5
q5/2 q + q

=

0

q

 (96) 

max , max +
dq

2
2

5
q5/2 q + q

=

q

qmax

 (97) 

< , q =
400

( + 0 )
4 ,  (98) 

where max =
dq

2
2

5
q5/2 q + q

, 0 =
400

q

1/4

,
0

qmax

  

q ,qmax  are determined from the equation 

2

5
qmax
5/2 qmax + q = 0,  

dq

2
2

5
q5/2 q + q

= max .
q

qmax

 

 The duration of the second stage (pore coalescence) can 

be estimated using the expression for the coalescence 

characteristic time, 

tII =
R3kT

D 2neq
,  (99) 

where  is the surface tension at the crystal/vacuum 

interface, R  is the void radius,  is the volume per vacancy 

and neq  is the equilibrium void concentration. 

 When the impurity diffuses throughout the crystal, it 

decorates the vacancy profile if the time it takes to pass the 

distance (timp )  is shorter than tII . Therefore, the condition 

for impurity profile formation has the form 

timp =
2

Dimp

tII ,  (100) 

where Dimp  is the impurity diffusion coefficient. 

 Detailed calculations are presented in the articles [70]. 

The estimation of the characteristic times of the first and 

second stages, which is performed for the temperature range 

of microvoid formation, showed that the relation 

tI << tS << tII  is satisfied. Hence, one can unambiguously 

conclude that a quasi-stationary pore profile is formed during 

silicon crystal growth if an excess vacancy concentration 

arises in the range of crystal cooling from 1403 to 1343 K. 

The conditions for decorating microvoids by background 

carbon and oxygen impurities (100) in the temperature range 

of 1343…1173  [34, 36] are satisfied well. Our results 

confirm that an increase in temperature reduces the 

probability for decorating the pore profile by impurity. 

 When stating the problem, we disregarded the vacancy 

drain to the lateral crystal surface. The lateral surface limits 

the conditions for forming microvoids in the crystal cross 

section from below: dmin > 2 . Therefore, under certain 

temperature conditions, microvoids should be formed in real 

commercial single crystals during growth if the crystal 

diameter exceeds 80 mm. 

 The fundamental interaction between impurities and 

intrinsic point defects upon crystal cooling under certain 

thermal conditions (  < 1423 ) leads to impurity depletion 

and the formation of a supersaturated solid solution of 

intrinsic point defects. The decay of this supersaturated solid 

solution causes the coagulation of intrinsic point defects in 

the form of microvoids or interstitial dislocation loops in 

different regions of the crystal. 

 An analysis of the experimental and calculated data 

within model of the vacancy coalescence in accordance with  
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the heterogeneous diffusion model of the formation of 

grown-in microdefects revealed the following reasons for the 

occurrence of microvoids in dislocation-free silicon single 

crystals: 

(i) a sharp decrease in the concentration of background 

impurity that was not associated into impurity 

agglomerates (formed in the cooling range of 

1683…1423 ); 

(ii) a large (over 80 mm) crystal diameter (in this case 

vacancies fail to drain from the central part of the 

crystal to the lateral surface); 

(iii) crystals of large diameter generally contain a ring of 

D-microdefects which forms due to the emergence of 

the (111) face on the crystallization front and which 

depletes the region inside with impurity atoms. 

 The growth parameter Vg /G  describes the fundamental 

reasons related to the systematic nonuniform impurity 

distribution during crystal growth from a melt. Based on an 

analysis of the experimental results, one can suggest that the 

parameter Vg /G  controls the growth because it describes 

the condition for the emergence of the (111) face at the 

crystallization front. Therefore, the impurity depletion inside 

the ring of D-microdefects upon crystal cooling at  < 1423 

K is caused by two things: the impurity bonding during the 

formation of primary grown-in microdefects ((I+V)-

microdefects) and the impurity drift to the (111) face, which 

is equivalent to the annular distribution of primary D-type 

grown-in microdefects. In this case, excess vacancies arise 

within the ring of D-microdefects to form a supersaturated 

solid solution with its subsequent decay and the formation of 

vacancy microvoids. In contrast, excess silicon self-

interstitials arise beyond the D-ring to form a supersaturated 

solid solution with its subsequent decay and the formation of 

interstitial dislocation loops ( -microdefects) [70]. 

6.4. Kinetic Model for the Formation and Growth of 
Interstitial Dislocation Loops 

 Kinetics of high-temperature precipitation involves three 

stages: (i) the nucleation of a new phase, (ii) the growth 

stage and (iii) the stage coalescence. Precipitates are formed 

in the crystal due to elastic interaction of point defects. They 

are present in a coherent elastically deformed state when the 

lattice distortion near the interface between precipitate-

matrix are small and one atom of the precipitate corresponds 

to one atom of the matrix [71]. Elastic deformation and 

associated mechanical stresses are responsible for the 

transfer of excess (missing) of a substance from the 

precipitate or to him. Accumulation of elastic energy during 

the growth of precipitate causes a loss of coherence with the 

matrix. In this case, it is impossible to establish one-one 

correspondence between atoms on opposite sides of the 

interface. This process leads to structural relaxation of 

precipitates. Structural relaxation of precipitates occurs 

through the formation and movement of dislocation loops. 

 To simulate the stress state of the precipitate and the 

surrounding matrix is sufficient to investigate the simplest 

spherical precipitate. For a spherical precipitate solution can be 

found in analytic form [72]. As the initial model, we take the 

theoretical and experimental research of stress relaxation of bulk 

quantum dots [73-76]. In accordance with these ideas during the 

growth of precipitate its elastic field causes the formation of 

circular interstitial dislocation loop. This process helps to reduce 

the total elastic energy of the system. Growing precipitate 

displaces the matrix material. Interstitial atoms form interstitial 

dislocation loop near a precipitate. Simultaneously on the 

precipitate are formed loop of misfit dislocation [76]. In this 

case the critical size of precipitates, at which is energetically 

favorable for the formation of dislocations have the same order 

with the critical size of dislocation loops [76]. 

 In the bulk of silicon a precipitate creates a stress field due 

to the mismatch of lattice parameters of precipitate a1( )  and the 

surrounding matrix a2( )  [76]. Then the own deformation of 

precipitate is defined as 

=
a1 a2
a1

 (101) 

 In general, the characteristic deformation of precipitate in 

the bulk of the matrix can be written in the form 

=

xx xy xz

xy yy yz

zx zy zz

pr( ) , (102) 

where the diagonal terms is dilated mismatch of crystal lattices 

of the precipitate and the matrix; the rest terms is the shear 

components; pr( )  is the Kronecker symbol. Elastic fields of 

precipitate (stresses ij  and deformation ij ) and field of full 

displacements are calculated taking into account their own 

deformation (102) and region of localization of the 

precipitate pr( ) . The calculation of elastic fields of the 

precipitate is carried out by well-known scheme by using the 

elastic modules, Green’s function of an elastic medium or its 

Fourier transform [76]. 

 Consider the simplest model of a spherical precipitate with 

equiaxed own deformation ii = , ij = 0 i j; i, j,= x, y, z( ) . 

The elastic strain energy of spheroidal defect with increasing 

radius of precipitate Rpr( )  increases as a cubic law [18]: 

Epr =
32

45 1( )
J 2 Rpr

3
, (103) 

where J  is the shear modulus;  is the Poisson's ratio. From a 

certain critical radius Rcrit  takes effect mechanism for resetting 

the elastic energy of the precipitate. This mechanism leads to 

the formation of circular interstitial dislocation loop [76]. 

Energy criterion of this mechanism is the condition 

Einitial E final
, here Einitial ,E final

 is the elastic energy of the 

system with the precipitate before and after relaxation, 

respectively [76]. 
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 In the case of a spherical precipitate with equiaxed own 

deformation calculation of the elastic fields precipitate is greatly 

simplified. Assume that the own elastic energy of the precipitate 

before and after the formation of loop of misfit dislocation 

remains constant Epr
initial

= Epr
final

. Then the criterion of 

nucleation loop of misfit dislocation can be represented by the 

condition 0 ED + EprD , where ED  is the energy of loop of 

misfit dislocation; EprD  is the energy of interaction of 

precipitate with the dislocation loop [76]. 

 To estimate believe that loop of misfit dislocation is the 

equatorial location on the spheroidal precipitate RD = Rpr  the 

self-energy prismatic loop [76] 

Eloop =
J b2 RD

2 1( )
ln
2 RD

f
2 , (104) 

where f  is the radius of the core loop; b  is the magnitude of 

the Burgers vector. The critical radius of precipitate for the 

formation of dislocation loop is determined from the expression 

[76] 

Rcrit =
3b

8 1+( )
ln
1.08 Rcrit

b
, (105) 

where  is a constant contribution of the dislocation core. 

Expression (105) is approximate and can only be used to 

determine the value critical radius Rcrit . 

 In [77] considered theoretically the kinetics of coarsening of 

dislocation loops on the stages of growth and coalescence of 

loops. It is assumed that, in general, growth is controlled by or 

an energy barrier at the capture loop of atom or the activation 

energy of diffusion of an interstitial atom. When the crystal is 

cooled after growth, we assume that the decisive role played by 

the processes of diffusion. Further, in calculating the evolution 

of the distribution of loop size and evolution density of loop 

model is used [78]. 

 At the stage of coalescence of dislocation loops with a 

radius R > Rcrit  will grow in size, while small dislocation loops 

with a radius R < Rcrit  will dissolve [77, 78]. The growth of 

dislocation loops during cooling after the growth of single 

crystal silicon occurs as due to dissolution of small loops with 

sizes less than critical, and as a result supersaturation for 

intrinsic interstitial silicon atoms. Growth conditions correspond 

to the parameter 
Vg
G < crit  (where 0.12 mm

2
/K·min crit  

0.3 mm
2
/K·min [79]). When there is a supersaturation for 

vacancies (
Vg
G > crit ), there will be dilution of interstitial 

dislocation loops. The growth of interstitial dislocation loop 

radius depending on the time of the cooling process of the 

crystal can be determined by the formula [78]: 

R(t) = Rcrit
2

+ j D(t) t , (106) 

where D(t)  is the diffusion coefficient of intrinsic interstitial 

silicon atoms; t  is the time cooling the crystal; j  is the 

proportionality factor. The value of the cooling time of the 

crystal is determined from the dependence: 

T (t) =
Tm
2

Tm +U t
[10, 66], where Tm  is the crystallization 

temperature (melting) of silicon; U = Vg G  is the cooling rate 

of the crystal. Dependence of concentration of the loops from 

the time of cooling of the crystal: 

N(t) =
M (t)

1+ D(t) t 2 Rcrit
2 , (107) 

where M (t) is the concentration of precipitates. 

 High-temperature precipitation of background impurities of 

oxygen and carbon as a result of their elastic interaction with 

intrinsic point defects is a fundamental process. This process is 

determines the defect structure of dislocation-free silicon single 

crystal and many important properties of silicon devices. By 

analyzing the electron-microscopic data on the investigation of 

precipitates in silicon single crystals obtained at different 

growth conditions we can talk about: (i) coherent precipitates, 

which do not contain next to of dislocation defect; (ii) 

precipitates with single dislocation loops; (iii) precipitates with 

multiple dislocation loops [14]. Initially precipitates impede 

processes of propagation and reproduction of dislocation loops. 

Then precipitates contribute to the formation of dislocation 

loops by the action sources of the Bardeen-Herring or the 

Frank-Read. These processes lead to the formation and growth 

of complex dislocation loops. Growth and coalescence of 

dislocation loops is provided by the generation of interstitial 

silicon atoms growing precipitates and dissolution of small 

dislocation loops. If the parameter of crystal growth 

Vg
G < crit , for stress relaxation precipitate generates own 

interstitial silicon atoms. If the parameter of crystal growth 

Vg
G > crit , for stress relaxation precipitate adsorbs vacancies. 

In this case is suppressed the formation of dislocation loops. 

CONCLUSION 

 The most fruitful approach to the problem of defect 

formation in dislocation-free silicon single crystals is to 

combine numerous experimental investigations and an analysis 

of the data obtained with the development of mathematical 

models of the grown-in microdefect formation based on these 

data. A diffusion model of the formation grown-in microdefects 

are based on the physical classification of these microdefects, 

the heterogeneous mechanism by which they form, and 

mathematical models of the formation of primary and secondary 

grown-in microdefects. The diffusion model provides the unity 

and adequacy of physical and mathematical modeling. The 

model of the dynamics of point defects can be considered as 

component part of the diffusion model for formation grown-in 

microdefects 

 The main feature of the diffusion model is the dependence 

of the parameters of all types of grown-in microdefects (e.g., 

size and concentration of the precipitates, loops and microvoids) 

from the thermal conditions of crystal growth. This feature 

allows calculating the initial defective structure of dislocation-
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free silicon single crystals of any diameter, obtained by the 

Czochralski method and floating zone melting. The diffusion 

model gives practical levers of management the defect structure 

of dislocation-free silicon single crystals directly during crystal 

growth. Appears a real possibility to link together the processes 

occurring in the melt, with the real physical processes of 

formation defects in the crystal during its cooling. 

 Diffusion model of formation grown-in microdefects is the 

key to solving the problem of formation of the defect structure 

during the manufacture of discrete devices and integrated 

circuits based on silicon. The transformation of the original 

defect structure after various technological actions can be 

described on the basis of methods and approaches the diffusion 

model. Then it will be possible to link together the processes of 

formation of grown-in microdefects and postgrowth 

microdefects and to develop real production operations for the 

defect engineering. 

 Diffusion model of formation grown-in microdefects 

answers the questions of interaction of point defects during 

crystal growth and to explains the initial defective structure of 

the crystal. It can serve as a basis for considering the formation 

of defects in other semiconductor crystals. 

 From our point of view of future research of the defect 

structure of dislocation-free silicon single crystals should: 

• consider the influence of other impurities (e.g., dopants, 

nitrogen, hydrogen, iron, and others) on the formation of 

the defect structure of silicon; 

• use improved methods of approximate calculations; 

• to carry out the development of 2D and 3D versions of 

the diffusion model of formation grown-in microdefects; 

• to carry out the development of software products based 

on the diffusion model in combination with known 

software products for modeling crystal growth; 

• use approaches and methods of diffusion model for 

modeling the formation of postgrowth microdefects after 

technological exposure (e.g., thermal and radiation 

treatments) and etc. 
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