
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Automation and Control Systems Journal, 2015, 7, 167-172 167

 1874-4443/15 2015 Bentham Open

Open Access
Design and Development of Network Application Layer Sniffer Analysis
Software

Yujiao Wang and Haiyun Lin*

Department of Physical Science and Technology, Kunming University, Kunming, 65021, China

Abstract: Through analysis of the sniffer technology, a software has been designed for analyzing the network data pack-
age of the application layer. It has good user interface and strong adaptability as well as it can help the network adminis-
trator to identify and eliminate any network abnormalities and improve the monitoring and guarantee capability of the
network’s reliability.

Keywords: Sniffer, Application Layer, Development of Software, Source Code of Software.

1. INTRODUCTION

The network data package analysis software acquires and
filters the transmitted network data package on the computer
network, verifies and analyzes the information and data of
the data package, realizes the recombination and recovering
of the data, and then presents a detailed protocol decoder [1].
This can be used to provide different network statistical data,
network status information, and error information and obtain
the status of the network flow data in order to identify the
existing potential security problem in the network. It is an
effective tool for the network security management person-
nel to manage network and analyze the operation status of
the network.

2. OVERVIEW OF SNIFFER TECHNOLOGY

The sniffer is a passive attack tool with great threat. This
tool can monitor the status of the network, data flow and the
information transmitted on a network. When the information
is transmitted in the form of explicit terms on a network, it
can be attached to the network via the process of network
monitoring [2]. And once the network interface is set to the
monitoring mode, the sniffer can intercept and capture the
continuous transmission of information on the network.

3. SNIFFER OPERATING PRINCIPLE

The data is transmitted in tiny unit named Frame. The
frame is composed of several parts. Different parts perform
different functions. The frame is formed through the soft-
ware named network driver. Then, it is sent to the network
cable through the network card, where it reaches its targeted
machine and carries out the reverse course on one end of the
targeted machine. The Ethernet card of the receiving end of

*Address correspondence to this author at the Department of Physical Sci-
ence and Technology, Kunming University, Kunming, 65021, China;
Tel: 13987180067; E-mail:tjwwyj817@163.com

the machine captures the frames, and tells the operating sys-
tem that the frames have arrived, and then stores them. How-
ever during this transmission and reception process the sniff-
er will bring some security problems. Each workstation on
LAN has its own hardware address. These addresses solely
represent the machine on the network, which is relatively
similar to the internet address system. When a user sends a
data package, if it is a broadcast packet, it can arrive at all
machines in the LAN. If it is a uni-broadcast packet, it can
only reach the machine in the same crash domain. Under a
normal situation, all machines on the internet can “hear” the
passing flow, but do not respond with their own data pack-
age [3]. In other words, Workstation A cannot capture the
data of Workstation B, it simply neglects that data. If the
network interface of a certain workstation is under the pro-
miscuous mode (the concept of the promiscuous mode is
interpreted as the following), it can capture all data packages
and frames on the network.

4. NETWORK MONITORING PRINCIPLE

The Sniffer procedure is a tool for setting the network in-
terface card (NIC, in general an Ethernet card) into the pro-
miscuous mode through the properties of the Ethernet net-
work. Once the network card is set into this mode, it can
accept each information package transmitted on the network.
Under the general situation, the network card only can accept
the information package related to its own addresses, i.e. the
information package transmitted to the local host. To make
the sniffer accept and process the information of such ap-
proach, the system should support BPF, and support socket –
packet under Linux. However, in general, the network hard-
ware and TCP/IP stack do not support receiving or sending
the data package unrelated to the local computer. Therefore,
to bypass the standard TCP/IP stack, the network card should
be set into the promiscuous mode we talked about earlier. In
general, to activate this approach, the core must support this
pseudo device filter, and also the root authority is required to
run this procedure. Therefore, sniffer needs the root to install
the identity. If it enters the system with a local user identity,

168 The Open Automation and Control Systems Journal, 2015, Volume 7 Wang and Lin

it is impossible to detect the code of the root, as then it be-
comes impossible to run sniffer. Based on the code of sniffer,
it is feasible to analyze all information packages and describe
the network structure and adopted machines [4]. As it re-
ceives any data package transmitted on the same network
segment, it can capture passwords, all information passing
through the network, confidential files, and other no-
cryptographic information.

5. INSTALLATION AND DEPLOYMENT OF THE
SOFTWARE

The network application layer sniffer analysis software
works in the form of sniffing. It collects the original data
package in the network, so that it can accurately analyze the
network default. If it is installed improperly, there will be
great difference in the collected data package, which will
influence the analysis result and lead to the above mentioned
problems. Therefore, it is quite necessary to properly install
and deploy the network protocol analysis software [5].

In general, the installation and deployment of the net-
work protocol analysis software has the following types:
share-based internet use Hub as the internet for switching
equipment in the center of the network, namely, the share-
based network, and the Hub works in the physical layer in
OSI layer with the sharing mode. If the central switch
equipment of your LAN is Hub, it is feasible to install the
networking protocol analysis software on any host in the
LAN, as at this time the software can capture all data com-
munication in the whole network. Adopt the switch as the
network for the central swift equipment in the network,
namely, switch network. The switch works on the data chain
layer of the OSI model [6]. Its ports can effectively separate
the collision domain. The internet connected by the switch
separates the whole internet into many small domains. If the
switch of your network has a mirror image function, it is
feasible to allocate terminal mirror image on the switch and
install the network protocol analysis software on the host
that connects the terminal of the mirror image, so the soft-
ware can capture all data communication from the entire
network. Some simple switches do not have the mirror image
function, making it impractical to conduct the internet moni-
toring analysis by port mirroring through these switches.
Under such situation, it is feasible to concatenate a Tap or
Hub between the switch and the router (or firewall) to finish
the data capture. Under a real situation, the topological struc-
ture of the network tends to be more complex. During the
network analysis we do not need to analyze the whole net-
work; instead, we need to analyze the departments or net-
work segmentation with abnormal operations which makes it
feasible to easily realize the data capture of any department
or any network segmentation. In a current small network, a
large part may still surf on internet by sharing the proxy
server. With regard to the analysis of this network the net-
work analysis software can be directly installed on the proxy
server. It should be noted that the analysis under such situa-
tions require data to be captured on the internal NIC and
external NIC of the proxy server.

6. REALIZATION OF THE NETWORK APPLI-
CATION LAYER SNIFFER ANALYSIS SOFT-
WARE

This software can consult the hierarchical structure of the
data package, content of the data link layer, content of the
network layer, and content and data of the transmission layer.
It is feasible to consult and capture the data package through
the set filtration, and analyze the content of the data package.
The software, developed through VS2005 is a necessary
software tool for the network maintenance, with simple in-
terface and convenient utilization.

7. SOME SOURCE CODE REALIZED BY THE
SOFTWARE

Protocol, port, source, target address, package length,
information length, and other source codes

public class IPPacketMessage : EventArgs

 {

 private static Filter myfilter = Filter.Get_instance();

 private string protocol;

 private string destination_port;

 private string origination_port;

 private string destination_address;

 private string origination_address;

 private string ip_version;

 private unit total_packet_length;

 private unit message_length;

 private unit header_length;

 private byte[] receive_buf_bytes = null;

 private byte[] ip_header_bytes = null;

 private byte[] message_bytes = null;

 public IPPacketMessage()

 {

 this.protocol = "";

 this.destination_port = "";

 this.origination_port = "";

 this.destination_address = "";

 this.origination_address = "";

 this.ip_version = "";

 this.total_packet_length = 0;

 this.message_length = 0;

Design and Development of Network Application The Open Automation and Control Systems Journal, 2015, Volume 7 169

 this.header_length = 0;

 this.receive_buf_bytes = new
byte[IPPacketIfc.rcv_buf_len];

 this.ip_header_bytes = new
byte[IPPacketIfc.rcv_buf_len];

 this.message_bytes = new
byte[IPPacketIfc.rcv_buf_len];

 }

 public string Protocol

 {

 get { return protocol; }

 set { protocol = value; }

 }

 public string Destination Port

 {

 get { return destination_port; }

 set { destination_port = value; }

 }

 public string OriginationPort

 {

 get { return origination_port; }

 set { origination_port = value; }

 }

 public string DestinationAddress

 {

 get { return destination_address; }

 set { destination_address = value; }

 }

 public string OriginationAddress

 {

 get { return origination_address; }

 set { origination_address = value; }

 }

 public string IPVersion

 {

 get { return ip_version; }

 set { ip_version = value; }

 public unit PacketLength

 }

 {

 get { return total_packet_length; }

 set { total_packet_length = value; }

 }

 public unit MessageLength

 {

 get { return message_length; }

 set { message_length = value; }

 }

 public unit HeaderLength

 {

 get { return header_length; }

 set { header_length = value; }

 }

 public byte[] ReceiveBuffer

 {

 get { return receive_buf_bytes; }

 set { receive_buf_bytes = value; }

 }

 public byte[] IPHeaderBuffer

 {

 get { return ip_header_bytes; }

 set { ip_header_bytes = value; }

 }

 public byte[] MessageBuffer

 {

 get { return message_bytes; }

 set { message_bytes = value; }

 }

public uint HeaderLength

 {

 get { return header_length; }

 set { header_length = value; }

 }

 public byte[] ReceiveBuffer

 {

170 The Open Automation and Control Systems Journal, 2015, Volume 7 Wang and Lin

 get { return receive_buf_bytes; }

 set { receive_buf_bytes = value; }

 }

 public byte[] IPHeaderBuffer

 {

 get { return ip_header_bytes; }

 set { ip_header_bytes = value; }

 }

 public byte[] MessageBuffer

 {

 get { return message_bytes; }

 set { message_bytes = value; }

 }

 unsafe public void Translate(byte[] message,int len)

 {

 byte temp_protocol=0;

 unit temp_version=0;

 unit temp_ip_srcaddr=0;

 unit temp_ip_destaddr=0;

 short temp_srcport=0;

 short temp_dstport=0;

 IPAddress temp_ip;

 fixed (byte* fixed_buf = message)

 {

 IPHeader* head = (IPHeader*)fixed_buf;

 this.HeaderLength = (uint)(head->ip_verlen
& 0x0F) << 2;

 temp_protocol = head->ip_protocol;

 temp_version = (unit)(head->ip_verlen &
0xF0) >> 4;

 this.IPVersion = temp_version.ToString();

 temp_ip_srcaddr = head->ip_srcaddr;

 temp_ip_destaddr = head->ip_destaddr;

 temp_ip = new IPAddress(temp_ip_srcaddr);

 this.OriginationAddress = temp_ip.ToString();

 temp_ip = new IPAddress(temp_ip_destaddr);

 this.DestinationAddress = temp_ip.ToString();

 temp_srcport =
(short)&fixed_buf[this.HeaderLength]; //for the pur-
pose of getting two byte

 temp_dstport =
(short)&fixed_buf[this.HeaderLength + 2]; //for the
purpose of getting two byte

 this.OriginationPort =
((ushort)IPAddress.NetworkToHostOrder(temp_srcport)).To
String();

 this.DestinationPort =
((ushort)IPAddress.NetworkToHostOrder(temp_dstport)).To
String();

 this.PacketLength = (unit)len;

 this.MessageLength = (unit)len -
this.HeaderLength;

 this.ReceiveBuffer = message;

 Array.Copy(message, 0, this.IPHeaderBuffer,
0, (int)this.HeaderLength);

 Array.Copy(message, (int)this.HeaderLength,
this.MessageBuffer, 0, (int)this.MessageLength);

 switch (temp_protocol)

 {

 case 1: this.Protocol = "ICMP"; break;

 case 2: this.Protocol = "IGMP"; break;

 case 6: this.Protocol = "TCP"; break;

 case 17: this.Protocol = "UDP"; break;

 default: this.Protocol = "UNKNOWN";
break;

 }

 }

 }

8. MAIN INTERFACE DESIGN

The main interface design after the operation of the soft-
ware is shown as follows:

Input IP in IP address, click “start” button, and start the
sniffing operation. Click “suspend” to temporarily stop the
sniffing operation, and click “start” to continue the operation
from the chasm. Click “stop” to completely stop this sniffing
operation. Click “eliminate” to eliminate the content dis-
played by this operation (Fig. 1).

9. STATEMENT INTERFACE

Some listed information, and the detailed statement is
presented below which shows different statement content of

Design and Development of Network Application The Open Automation and Control Systems Journal, 2015, Volume 7 171

UDP, TCP and ICMP. The length of the header is 4 byte.
The purpose of this field is to describe the length of IP pack-
age head, as there is only a selective part that is lengthened.
The minimum length of IP package head is 20 byte. The
maximum length of selective part with the extending length
may be turned into 24 byte, SrcPort: identify the point of the
superstratum source processor to receive TCP service;
DestPort: identify the point of the superstratum source pro-

cessor to receive TCP service; Length: 16 byte; The maxi-
mum length of IP package is 64,535 byte; Data: including
the superstratum information (Fig. 2).

Content statement of TCP is largely identical but with
minor difference with that of UDP. The former one has addi-
tional Data Offset. Data Offset: 4 byte. 32-byte serial num-
ber in TCP protocol presents the starting position of the data
(Fig. 3).

Fig. (1). The main interface design.

Fig. (2). Content statement of UDP.

172 The Open Automation and Control Systems Journal, 2015, Volume 7 Wang and Lin

CONCLUSION

The software testing result indicates that the software has
fast speed in capturing data, and it can consult the hierar-
chical structure of the data package, content of the data link
layer, content of the network layer, and content and data of
the transmission layer; it is feasible to consult and capture
the data package through setting the filtration, and analyze
the content of the data package. The analysis result of this
software is correct, and the content is with distinct gradation
and easy to understand, which powerfully supports the work
of the network maintenance.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES
[1] U. Lamping, and R. Sharpe, Wireshark User’s Guide [E-book],

2010.
[2] How to capture the packet. www.wireshark.org. 2011 [Online].
[3] Capturing packets on windows. http://www.wireshark.org/faq.html-

#sec8.html.2011[Online].
[4] D. Liu. “The technology research based on network packet,” J.

Jilin Univ., 2012.
[5] F. Liu, and F. Yang, “Capture the network system based on

WinPcap,” Comput. CD Software Appl., vol. 8, pp. 132-133, 2012.
[6] S. Du, J. Wang, Z. Chen, and L. Xiang, “Research on the testing

techniques of the software network interface based on the capture
and analysis of the packet,” Sci. Res., vol. 8, pp. 1305-1308, 2011.

Received: December 15, 2014 Revised: January 04, 2015 Accepted: February 25, 2015

© Wang and Lin; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Fig. (3). Content statement of TCP.

