
Send Orders for Reprints to reprints@benthamscience.ae 
1470 The Open Automation and Control Systems Journal, 2015, 7, 1470-1475  

 
 1874-4443/15 2015 Bentham Open 

Open Access 
Research on the Generalized Decision Reducts and the Acquisition of  
Optimal Decision Rules in Generalized Decision Information System 

Chen Keming1,2, Zheng Jian-guo2, Li Kang3 and Deng Li4 

1School of Business and Management, Donghua University, Shanghai 200051, China; 2School of Continuing Education, 
XinYu University, XinYu University, JiangXi, 338004, China 

Abstract: This paper discusses generalized decision reducts and the acquisition of optimal decision rules in general (con-
sistent or inconsistent) decision information systems. The properties and relationship between Pawlak reducts with respect 
to definite information and generalized decision reducts based on  indefinite information were analysed and revealed re-
spectively. Secondly, the computation approach of reducts and optimal decision rules based on discernibility functions 
were  given. Last but not the least, a type of improved discernibility matrix was constructed, which can be used to com-
pute generalized decision reducts and generalized decision core as well as Pawlak reducts and core. The discussions in 
this paper considered the consistency of information systems, in making a distinction between Pawlak reducts and gener-
alized reducts. This work improved and generalized the relevant study by  senior researchers. Moreover, some misunder-
standings in the computation of cores in information systems have also been clarified from mathematical  point of view. 
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1. INTRODUCTION 

Rough set theory was proposed by Professor Z. Pawalak 
in 1982. It is an effective tool to deal with uncertainty and 
incomplete information, and used it successfully in machine 
learning, data mining, decision analysis, inductive reasoning, 
and so on. Based  on the mechanism of classification, rough 
set theory considers the classification of universe as a form 
of knowledge. This idea is the main and important thought of 
rough set theory. Comparing with other mathematic tools 
which are used for  handling uncertainty and vague prob-
lems, such as probability theory, fuzzy theory and evidence 
theory, rough set theory has its own outstanding advantages. 
It does not need subjective information beside the known 
objective data, and describes and resolves the uncertainty 
problems objectively. 

The researches on the mathematical theory  of classical 
rough set, including axiom problem, topology structure, al-
gebraic structure and so on, have achieved fruitful results [1, 
2]. Y.Y. Yao discussed constructive and algebraic methods 
of rough set theory, and studied the relationship between 
rough set and other mathematic concepts such as pairs of 
definable set, interval set, families of subsets and rough 
member function from set-oriented view, interior and closure 
operator in topological space, necessity and possibility oper-
ators in modal logics, and lower and upper approximations in 
interval structure from operator-oriented view [3, 4]. There 
are three key factors relative to classical rough set, they are; 
universe, binary relation on the universe and categories. 
Therefore, the classical rough set model can be extended 
according to these three factors.  
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In addition, by generalizing classical inclusion relation to 
approximate inclusion relation, classical rough set model can 
be extended further. The binary relation in classical rough set 
is equivalent. That is, it is reflexive, symmetric and transitive. 
By removing or replacing the properties of the equivalent rela-
tion in classical rough set model, some different extensive 
models can be obtained [4]. For example, generalized approx-
imate space in which approximate operators are neighbour-
hood operators determined by an arbitrary binary relation [5, 
6]; generalized approximate space in which the binary relation 
is reflexive and transitive [7]; generalized approximate space 
in which the binary relation is reflexive, anti-symmetric and 
transitive [8, 9]; and tolerant rough set model in which the 
binary relation is reflexive and symmetric. In addition, by 
generalizing the classical binary relation to fuzzy relation, 
fuzzy approximate space can be obtained [10]. 

In classical rough set model, for the relationship between 
two subsets of universe, only the terms "include" and "don't 
include" are considered. Sometimes this idea has its own 
restriction, because "include" and "don't include" are only 
two special cases; they cannot describe the approximate in-
clusion (inclusion to some extent), and this may lead to in-
formation loss in practice. In order to resolve this problem, 
two extended rough set models are introduced: (1) variable 
precision rough set model; (2) rough set model based on un-
certainty function and rough inclusion function, which is a 
generalization of classical rough set model, variable preci-
sion rough set model and generalized rough set model based 
on reflex relation. 

2. ROUGH SET THEORY WITH OTHER MATHE-
MATIC THEORIES 

Fuzzy set and rough set both are generalizations of clas-
sical set. In view of "knowledge granularity", fuzzy set de-
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scribes the degree of an object belonging to one set by so 
called membership function. It emphasizes vagueness of 
boundary of the set; whereas, based on the classification of 
universe by indiscernibility relations, rough sets theory uses 
lower and upper approximation to describe the set,  empha-
sizing the indiscernibility of objects. Fuzzy sets describe the 
degree of objects belonging to the same class; whereas rough 
sets describe the relationship of an object with its indiscerni-
bility class to other sets. Both membership functions of fuzzy 
sets and rough membership functions of rough sets represent 
the uncertainty of concepts, but membership functions of 
fuzzy sets are always given by experts subjectively, whereas 
rough membership functions of rough sets can be obtained 
directly from data. 

D. Dubois and H. Prade considered the combination of 
fuzzy set and rough set, and proposed fuzzy rough set and 
rough fuzzy set. Other works on fuzzy rough set and rough 
fuzzy set can be seen in related references. Knowledge dis-
covery in data base (KDD) is one of the important applica-
tions of rough set theory. So far, several RS data mining sys-
tems have been  developed, such as LERS of Kansas univer-
sity in America, Rough DAS and Rough Class of Poznan 
technology university in Poland, KDD-R of Reginain Uni-
versity in Canada. Attribute reduct and optimal decision 
rules acquisition in information systems have been  im-
portant research fields. 

The main applications of rough sets theory to information 
systems are attribute redact and decision rules optimization. 
In information systems,  all the attributes are not necessary. 
By attribute redact,  under a certain standard, it can be decid-
ed which attributes are absolutely necessary, which attributes 
are relatively necessary and which attributes are abundant. 
Thus, it is important  to evaluate the importance of attributes, 
and redact abundant attributes. Attribute redacts are clarsfied 
into redacts of system and redacts of decision rules. The re-
dact of the system is an attributes’ set which keeps a certain 
information of the original system. The redact of a decision 
rule, which is called redact of object or also value redact, is a 
conditional attributes’ subset which determines the decision 
values. Finding the redacts of a decision rule and deleting the 
abundant conditional attributes, optimal decision rules can be 
derived. Discernibility matrix approach and information ap-
proach are two important methods for computing attribute 
redacts. This paper utilizes discernibility approach to com-
pute attribute redacts and make  optimal decision rules in 
complete decision information systems (decision tables). 
Pawlak proposed the relative redact of decision tables [11, 
12] which keeps the relative positive field unvaried. This 
kind of redacts concerns only definite information of the 
system, and does not consider indefinite information. There-
after, many concepts of attribute redacts have been proposed 
according to different purposes, such as possible redacts, 
approximate redacts, generalized decision redacts, U-
decision redacts are equivalent to u-redacts (known as quan-
titative redacts); and quantitative redact must also be qualita-
tive redact. Both qualitative redacts and quantitative redacts 
are redacts from  algebraic viewpoint. Distribute redact and 
possible redact proposed by Zhang et al. in Ref. [13] coin-
cide with the µ-decision redact. 

The qualitative reduct of decision table is defined by the 
reducts of objects. The reducts of objects induce the corre-
sponding optimal decision rules. Kryszkiewicz discussed in 
Ref. [14] the relationship of possible reducts, approximate 
reducts, generalized decision reducts, /.c-decision reducts, 
and µ-reducts. Liang and Li improved in Ref. [15] the results 
of Kryszkiewicz, and pointed out that the relationships be-
tween the reducts of the system are different with the rela-
tionships between reducts of the object. 

The reducts of decision table are not necessarily the re-
ducts of objects, therefore, they may not induce optimal de-
cision rules. In fact, the reducts of decision table are minimal 
conditional attribute sets which can simplify all the decision 
rules. Discernibility matrix [16, 17] proposed by Skowron 
and its improved forms proposed by others, are effective 
tools for computing reducts of decision table. In order to 
compute the core attributes of decision table, Hu and Cer-
cone proposed in Ref. [18] a kind of improved discernibility 
matrix (called Hu-improved discernibility matrix in this sec-
tion) and Ye and Chen pointed out in Ref. [19] the drawback 
of Hu-improved discernibility matrix, and gave other im-
proved discernibility matrix (called Yu-improved discerni-
bility matrix in this section). Wang pointed out in Ref. [20] 
that it is the inconsistency of the decision table that results in 
the creating error in  Hu-improved discernibility-matrix. 
Wang compared the cores of system computed by Hu's and 
Ye's discernibility matrices with the core of system under 
information viewpoint. The discussion in this section con-
firms  that Hu's and Ye's discernibility matrices did not con-
cern the difference in the  consistency and inconsistency of 
the system, and either  generalized decision reducts. 

This paper discusses the generalized decision reducts of 
inconsistent decision table, proposes an improved discerni-
bility matrix, and compares it with Hu's and Ye's discernibil-
ity matrices. It can be seen that Hu's, Ye's and the  defini-
tions of discernibility matrix discussed in this paper coincide 
with each other for consistent decision tables. For incon-
sistent decision tables, Hu's discernibility matrix would be 
invalid, Ye's discernibility matrix  can be used to compute 
Pawlak reduct only, whereas the discernibility matrix  pro-
posed in this paper can not only be used to compute general-
ized decision reducts, but also can be used to compute Paw-
lak reducts by its sub-matrix corresponding to consistent 
objects. 

3. ATTRIBUTE REDACTS AND OPTIMAL DECISION 
RULES IN INFORMATION SYSTEMS 

An information system is a quadruple S = <U, A, V, f>, 
where U is a non-empty finite set of objects, A is an attrib-
utes set 

 
V = !

a!A
Va , where Va is the domain of a, a!A ; 

f :U ! A"#" V is an information function such that for 
x !U  and a!A , f (x,a)!Va . Denoting f(x, a) = a(x) for 
convenience. 

If each object has unique known attribute value for every 
attributes in information system S=<U, A, V, f>.  S=<U, A, 
V, f>  is known as complete information system. 

In this system, complete information is  clarified to con-
dition system S=<U, A, V, j>, attributes and decision if the 
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attributes in A  are, A = C!D,C"D =# , we call S=<U, C
!D, v, f> decision information system. It is always repre-
sented as a table which is called the decision table. For con-
venience, we  assume that D={d}. Let S=<U, C! {d},V, f> 
be a decision information system, and B !  C. Defining an 
indiscernibility relation IND(B) on U is as follows: 

IND(B) = {< x, y > < x, y >!U "U,
#b!B,b(x) = b(y)}

     (1) 

The equivalent class containing object x is denoted by 
[x]IND(B) or [x](B). X !  U,  denoting the lower and upper ap-
proximations of X with respect to IND(B) as follows: 

B(X) =!{[x]B [x]B " X}          (2) 

B(X) =!{[x]B [x]B " X # $}         (3) 

and  the relative positive field of B is denoted with re-
spect to d as: 

POSB d( ) =!{B(Di ) Di "U / IND(d)}      (4) 

It is the set of objects which can be clarified definitely to 
decision equivalent classes according to classified infor-
mation of attributes set B. 

Definition 1: Let 

! B(d) =
B(Di )
U

=
POSB(d)

Ui=1

k

"       (5) 

! B(d) is called as B-approximate precision of partition 
{D1, D2,…, Dk}. 

 The set of generalized decision reducts of x is denoted as 
red(x), call the intersection of all generalized decision redact 
of x as generalized decision core of x and denoted it as 
core(x, C). 

The optimization of decision rules  is often defined as a 
process of simplifying the description of condition attributes 
of rules under the same decision to make conclusions. In this 
way,  the necessary condition attributes for decision conclu-
sions could be found. 

Definition 2: If B (B! C) is a minimal attribute set such 
that !B x( ) = !C x( )  for !x "U , where  B represents a gen-
eralized decision reduct of decision.Information system calls 
for the intersection of all generalized decision redacts  as 
generalized decision core of decision information system, 
which is denoted by G-core. 

The generalized decision redact of information system is 
a minimal conditional attributes set which simplifies all the 
decision rules, but it is not necessarily  a redact of certain 
decision rules. The relationship between redacts of system 
and redacts of objects can be seen clearly from the discerni-
bility function defined below. 

Let B! C, then the following expressions (1)-(4) are 
equivalent with each other: 

(1) B is a Pawlak reduct of decision information system. 
(2) B is a minimal condition attributes set satisfying 

POSEB (d) = POSEC(d). 

(3) B is a minimal conditional attributes set satisfying 
B(Di ) = C(Di )  for !Di "U / IND(d) . 

(4) B is a minimal conditional attributes set satisfying 
!B x( ) = !C x( )  for !x "C(U ) .  

The possible reducts and approximate reducts are equiva-
lent to generalized decision reducts, therefore,  they can be 
viewed as the equivalent description of generalized decision 
reducts. Another equivalent description of the generalized 
decision reduct is shown as below: 

B is a generalized decision reduct of decision information 
system !  B is a minimal condition attributes set satisfying 
B(Di ) = C(Di )  for !Di "U / IND(d) . 

Pawlak reducts merely  simplify definite decision rules, 
and it cannot simplify all the indefinite decision rules. But 
generalized decision reducts can simplify all the decision 
rules. 

Example 1: will illustrate approaches to compute re-
ducts, core, and optimal decision rules for the inconsistent 
decision table presented in Table 1. 

 
Table 1. An inconsistent decision table. 

U 
Factors 

C1 C2 C3 C4 d 

X1 1 0 0 0 1 

X2 0 1 1 1 2 

X3 1 1 0 0 2 

X4 0 1 1 0 3 

X5 1 1 0 0 1 

X6 1 0 0 0 3 

X7 1 1 1 1 2 

 
Example 2: Table 2 is an inconsistent decision table. 

 
Table 2. An inconsistent decision table. 

U 
Factors 

C1 C2 C3 d 

X1 1 0 1 1 

X2 1 0 1 0 

X3 0 0 1 1 

X4 0 0 1 0 

X5 1 1 1 1 

 
This section discusses the properties of Pawlak reducts 

and generalized decision reducts and their connection, and 
proposes  the computation approach of reducts of decision 
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rules and systems by using  Boolean reasoning techniques. A 
new definition of discernibility matrix, which can be used to 
compute Pawlak reducts and core, generalized decision re-
ducts and core, and optimal decision rules was proposed. It 
was observed  that this definition of discernibility matrix 
coincides with those of Hu's and Ye's for consistent decision 
tables, and  for inconsistent decision tables. Moreover, Hu's 
indiscernibility matrix is invalid to compute Pawlak reducts 
and core, and generalized decision reducts and core, howev-
er, Ye's indiscernibility matrix can only be  used to compute 
Pawlak reducts and core. In other  words, the new  definition 
of indiscernibility matrix can be viewed as the generalization 
of Hu's and Ye's definitions. 

Wang and some other authors discussed the relationship 
between reducts of decision table from  algebraic point of 
view  and information. They found that, for consistent deci-
sion tables, definitions of reducts under these two views co-
incide with each other, but for inconsistent decision tables, 
they are not equivalent. It may be interesting to consider the 
relationship between the generalized reduct from  algebraic 
point of view and information. 

4. TOLERANCE ROUGH SET MODELS AND IN-
COMPLETE INFORMATION SYSTEMS 

 By expanding  the equivalent relation to more general 
binary relations, classical rough set model can be further 
generalized as general models. Approximate operators de-
fined by neighbourhood operators based on arbitrary binary 
relation were studied. Approximate operators based on flexi-
ble and transitive relation were  discussed in Ref. [13]. Ap-
proximate operators based on flexible relation were  studied 
in Ref. [14]. Approximate space based on flexible and sym-
metric relation was discussed in Reference [15, 16]. A gen-
eral approximate space defined by uncertain function and 
rough inclusion function was discussed in Ref. [17, 18]. 

In practice, tolerant relation and partial order relation are 
two important binary relations. Approximate operator model 
based on partial order relation was proposed in Ref. [19], 
and successfully applied for the evaluation of risks involved. 
Tolerant rough set model was used to discuss attribute reduct 
and decision rule optimization in Ref. [20]. 

Some tolerant classes of the tolerant relation on a uni-
verse can form a cover of the universe, and tolerant rough set 
model can be derived by defining lower and upper operators 
using tolerant classes. Whereas, one tolerant relation on the 
universe may generate more than one cover, and this leads to 
inconvenient  practice. In Ref. [21], the set of objects which 
are tolerant with a certain object is viewed as a class, and all 
such classes form a cover of universe. Unfortunately, objects 
contained in such a class may not be tolerant with each other, 
so they may not possess the common attribute description, 
and this leads to inconvenience for drawing decision rules. 
Therefore, the classification approach presented in Ref. [22] 
has some drawbacks. The cover of the universe consisting of 
maximal tolerant classes is determined uniquely by the toler-
ant relation. The maximal tolerant class is a maximal set of 
objects which possess a certain attribute description. Be-
tween two different maximal tolerant classes, there are no 
inclusion relations. Therefore, maximal tolerant classes can 

be viewed as neighbourhood and used to define lower and 
upper operators in this section. 

In mathematical forms, complete information systems are 
special case of incomplete information systems containing 
null attribute values; incomplete information systems con-
taining null attribute values are special case of incomplete 
information systems containing some objects with partial 
known attribute values and they are special set-valued in-
formation systems. 

In complete information systems, each object has unique 
known attribute value with respect to every attribute. There-
fore, we can define a discernibility relation on the universe,  
lower and upper operators by indiscernibility classes, and 
discuss attribute reduct and decision rules optimization. In 
incomplete information systems, attribute values of some 
objects with respect to certain attributes are unknown or par-
tially known, and in set-valued information systems, objects 
may have multiple attribute values with respect to certain 
attributes, making  it  difficult to define an equivalent rela-
tion. On one hand, incomplete information systems can be 
transfixed to complete information systems, but this may 
result in  informationloss .  On the other hand, tolerant rough 
set model can be used to deal with incomplete information 
systems. This section gives new approaches using tolerant 
rough set model to discuss attribute reduct and optimal deci-
sion rules  in incomplete information systems and set-valued 
information systems. 

Two kinds of lower and upper approximate operators are 
defined by using maximal tolerant classes, respectively. This 
study analysed  incomplete information systems containing 
null attribute values. Y-descriptor of the maximal tolerant 
class was  proposed, and used to define the decision rules. 
Moreover, the concept of relative reduct of the maximal tol-
erant class and optimal credible decision rules were  pro-
posed, and a kind of corresponding discernibility function 
was  defined. By computing minimal disjunctive forms of 
discernibility function of maximal tolerant classes, optimal 
credible decision rules can be derived. Attribute descriptors 
were introduced to define the   lower and upper approximate 
operators, and the concept of reduct of the attribute de-
scriptor was also proposed, but its computation approach 
was not given. Incomplete information systems containing 
objects with partial known attribute values were  studied by 
attribute descriptors. In this section,  a new kind of lower and 
upper approximate operator were defined, abd  discernibility 
functions of attribute descriptors were designed to compute 
the reducts of attribute descriptors and induce optimal deci-
sion rules. The  so called GS-reduct, DS-reduct, G-reduct 
and D-reduct were also defined to evaluate the significance 
of attributes. 

Let 

R(x)= y | yRx, y!U{ }                (6) 

R(x)=! K |K "CCR(x){ }              (7) 

For X !U , we have: 

I(X)= K |K ! X,K "CCR(U ){ }            (8) 
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O(X)= K |K ! X=",K #CCR(U ){ }           (9) 

B(X)= K |! " K # X " K ,K $CCR(U ){ }    (10) 

Then CCR(U )  is the disjoint union of I(X) , B(X)  and 
O(X) . 

Definition : Let 

AR(X)=! x |"K #CCR(x),K $ X{ }      (11) 

ER(X)=! x | "K #CCR(x),K $ X{ }       (12) 

Where,  AR(X)  and ER(X)  are  A-lower approximation 
and E-lower approximation of X  respectively; Let 

AR(X)=! x |"K #CCR(x),K $ X %&{ }     (13) 

ER(X)=! x | "K #CCR(x),K $ X %&{ }      (14) 

 AR(X)  and ER(X)  represent the  A-upper approxima-
tion and E-upper approximation of X  respectively; and 
AR(X) , ER(X) , AR(X)  and ER(X)  represent  A-lower, E-
lower, A-upper E-upper approximate operator, respectively. 

Both membership function of fuzzy set and rough mem-
bership function of rough set represent the vagueness of con-
cepts. The membership function of fuzzy set is always given 
by experts subjectively, whereas the rough membership 
function of rough set is determined completely by analysed 
data, hence,  it is objective. In approximate space, the equiv-
alent classes are minimal recognition units, and the degree of 
an object belonging to a certain concept is determined com-
pletely by the relationship between the equivalent class con-
taining the object and the concept, and in other words, it is 
determined completely by rough membership function. By 
using the rough membership function, various similarity de-
grees of rough sets were observed  referring to the concepts 
of similarity degrees of fuzzy sets. 

Both fuzzy sets and rough sets are generalizations of 
classical sets. This section  summarizes the similarity 
measures of classical sets and fuzzy sets firstly. When fuzzy 
sets degenerate into classical sets, four kinds of ordinary 
fuzzy similarity degrees are degenerated into one of the three 
classical similarity degrees. In approximation space, because 
the objects contained in the same equivalent class are indis-
cernible, therefore, e the similarity degrees of rough sets are 
described using rough membership functions. In this study,  
eight kinds of rough similarity degrees referring to corre-
sponding fuzzy similarity degree were proposed with  
demonstration of their properties. The properties of similari-
ty degrees of classical sets, fuzzy sets and rough sets were 
also compared . 

The main applications of rough sets theory on  infor-
mation systems include  attribute redact and decision rules 
optimization. In information systems, not all the attributes 
are necessary. By attribute redact, a certain standard is set for 
determining all  absolutely necessary attributes,  relatively 
necessary attributes and  abundant attributes. Thus, it is nec-
essary  to evaluate the importance of attributes, and redact 
abundant attributes. Attribute redacts are clasified into re-

dacts of system and redacts of decision rules. The redact of 
the system is an attributes set which keeps a certain infor-
mation of original system. The redact of a decision rule, 
which is called redact of object or also value redact , is a 
conditional attributes’ subset which determines the decision 
values. Finding the redacts of a decision rule and deleting the 
abundant conditional attributes, optimal decision rules can be 
derived. 

CONCLUSION 

This paper,  discussed the set-valued information systems. 
From mathematical  point of view, set-valued information 
systems are generalization of complete and incomplete in-
formation systems. On the other hand, tolerant relation is 
generalization of equivalent relation. Maximal tolerant clas-
sification method can make objects contained in the same 
maximal tolerant class possess the same attribute description 
and objects possessing the same attribute description are in 
the same maximal tolerant class, hence the optimal decision 
rules can be computed conveniently. For this purpose, this 
study  defined two kinds of lower and upper approximate 
operators using maximal tolerant classes,  proposed three 
kinds of reduces/reducts of information systems to evaluate 
the significance of attributes; defined generalized and defi-
nite decision rules and their optimal decision rules, and pro-
posed the concept of discernibility function of maximal tol-
erant class to compute optimal generalized decision rules. 

Approaches used in previous  papers  are used to deal 
with incomplete information systems, the the approach dis-
cussed in section 4 can be used to deal with conjunctive in-
terpreted set-valued information systems. Maximal tolerant 
classification method discussed in section 3 and 5 is used  to 
make  decision rules by classifying the universe. In this sec-
tion, attributes descriptors in decision rules showing  optimal 
decision rules are induced by discernibility function of de-
scriptors. 
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