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Abstract: Non-linear sound propagation is investigated computationally by simulating compressible time-developing 
mixing layers using the Large Eddy Simulation (LES) approach and solving the viscous Burgers Equation. The mixing 
layers are of convective Mach numbers of 0.4, 0.8 and 1.2. The LES results agree qualitatively with known flow behavior. 
Mach waves are observed in the near sound field of the supersonic mixing layer computed by the LES. These waves show 
steepening typical to non-linear propagation. Further calculations using the Burgers equation support this finding, where 
the initial wave slope has a role in kicking them. No visible non-linear propagation effects were found for the subsonic 
mixing layers. The effects of geometrical spreading and viscosity are also considered. 
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1. INTRODUCTION 

 Commonly, linear propagation is assumed for sound 
emitted by free shear flows such as jets. This assumption is 
suggested in the Lighthill acoustic analogy [1] and is also 
employed in approaches which account explicitly for mean 
flow effects on the sound emission, e.g. [2], having been 
used successfully to predict sound generated by subsonic and 
supersonic jets [2-4]. By these approaches the sound is 
generated by the deformation of the flow eddies as they 
convect along the jet. As the jet speed increases the emitted 
sound amplitude also increases as expressed by Lighthill’s 
U

8 law for the emitted acoustic power output from subsonic 
jets. However, the latter still remains a tiny fraction of the 
hydrodynamic power embedded in the jet, thus justifying as 
it seems the linear acoustics assumption. The increase in the 
sound amplitude is more profound in the downstream side of 
the jet as exhibited e.g. by the Lighthill’s Doppler factor (1 – 
MS cos )-5 for the acoustic intensity, where MS is the source 
Mach number and  is the spherical downstream angle. 

 At supersonic speed this form of the Doppler factor 
breaks down at the Mach angle  =cos-1(1/MS). Intensive 
sound waves called Mach waves propagate at that direction 
[1]. They are caused by a change in the sound generation 
mechanism where the mere supersonic convection of the 
eddies generate the sound. A correction to the Lighthill’s 
Doppler factor making it finite in the Mach wave direction 
while assuming linear acoustics is possible by taking into 
account the finite life span of the sound-generating flow 
eddies [5]. Another approach taking into account explicitly 
the high speed mean flow effects was given by Goldstein &  
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Leib [2], where attention was given to the peak of the 
supersonically generated noise. However, Goldstein & Leib 
[2] were careful to limit their computations to jets that were 
not dominated by Mach waves emission, arguing the latter 
could be affected by non-linear propagation effects, which 
were not accounted in their analysis. These non-linear (NL) 
effects can appear because of the change in the mechanism 
of the sound generation, causing the Mach waves to have 
high amplitude as relative to the subsonically-generated 
sound and possibly to have also a higher wave steepness. 

 Lighthill [1] used the non-linear inviscid planar Burgers 
equation to show that saw-tooth waves can damp as 1/r 
because of NL propagation effects, where r is the 
propagation distance. However the non-linear process of 
“bunching” where waves merge can moderate that damping. 
It was postulated that this process might occur in the near 
sound field where Mach waves acted as plane waves. 
Crighton [6] argued for the importance of the Sound 
Pressure Level (SPL) to kick NL effects and used the 
Burgers equation to derive an asymptotic estimate for the 
decay of the frequency spectrum at the high frequency range. 
The planar Burgers equation was also used by Punekar et al. 
[7] to study the statistical evolution of random waves as may 
be produced by supersonic jets. Freund et al. [8] used data 
achieved from Direct Numerical Simulation (DNS) of a 
supersonic perfectly expanded jet and the 1D weak shock-
wave theory to study NL propagation. They noticed NL 
effects in terms of amplitude reduction and steepening of the 
sound wave. Nevertheless, it was concluded that linear 
acoustics could still capture the main features of the sound 
propagation and a linear wave equation was further used. 

 Brouwer [9] used the Burgers equation to analyze NL 
propagation for jet noise emitted by the F18 jet fighter 
engine. The initial time signal that was fed into the Burgers 
equation was constructed by producing random waves and 
then adjusting their frequency spectra to published spectra 
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from F18 engine tests. It was suggested to correlate NL 
propagation effects with the Sound Pressure Level (SPL) and 
the peak frequency in the near sound field. NL effects were 
shown to reduce the SPL up to 6dB when the starting point 
for the Burgers equation calculation was about 10 m away 
from the jet. As the starting point for the Burgers 
calculations was taken further away from the jet the NL 
effects diminished. 

 Gee et al. [10] analyzed ground F22 jet fighter engine 
tests using the Burgers equation as well. Unlike Brouwer [9] 
they found no NL effects when the engine operated without 
an aft burner. They reasoned it by the lower level of the F22 
SPL as compared to the F18. Thus when the aft burner of the 
F22 engine was used, which raised the far field SPL by about 
50 dB, noticeable NL effects were found in the high 
frequency range. Saxena et al. [11] developed a frequency 
domain solver for the Burgers equation taking into account 
atmospheric relaxation processes and ground reflections. 
They applied the solver for jet noise obtained experimentally 
from an anechoic chamber and F18 engine ground tests. NL 
effects in the high frequency range were noticed for heated 
jets with exit Mach number MJ = 0.9 & 1.9 at about 150 
diameters away from the jet. The F18 noise analysis showed 
a reduction in the peak amplitude and an increase in the high 
frequency range because of NL effects as was also found by 
Brouwer [9]. 

 In this study we will look at NL propagation for noise 
emitted by the mixing region of a free jet with the aim of 
identifying Mach number dependence for the onset of non-
linear processes. Other noise components emitted by non-
perfectly supersonic jets such as broadband shock-cell and 
screech noise will be discussed elsewhere. Lighthill [1] 
postulated that NL effects can be important for supersonic 
sound sources because of the generation of the Mach waves. 
On the other hand, Crighton [6] and Gee et al. [10] put more 
emphasis on the SPL of the near field as the trigger causing 
NL propagation. Clearly Mach waves are associated with an 
increased SPL, but the question whether they are necessary 
and sufficient to trigger NL propagation remains open. Here 
the following roles in triggering NL propagation will be 
computationally studied; the Mach number of the sound 
source MS and the initial sound wave form including 
amplitude and steepness. 

 For the purpose of our investigation compressible time-
developing planar mixing layers will be simulated. The 
density fluctuations recorded in the near sound field of the 
mixing layer will be propagated using the Burgers equation 
to examine NL propagation effects. The time-developing 
mixing layer occurs when periodic streamwise boundary 
conditions are assumed causing the layer to develop in time 
rather in the streamwise direction in terms of transition to 
turbulence. This kind of flow development requires much 
less computational effort than the spatially evolving mixing 
layer, although the latter resembles much better what is seen 
in experiments. Nevertheless, Avital et al. [12, 13] showed 
that the near sound field of supersonic time-developing 
mixing layers resembles that of the corresponding spatially-
evolving mixing layers. This correspondence was used to 

analyze DNS results of supersonic time-developing mixing 
layers and to predict the behavior of supersonic jet mixing 
noise. Although the similarity breaks down for subsonic 
mixing layers, Fortuné et al. [14] used successfully DNS 
results of low speed time-developing mixing layers to 
reproduce known aeroacoustic results and examine the effect 
of the Mach number in the subsonic range. Hence the time-
developing mixing layer will be used as the model shear 
flow in this study. The mathematical and computational 
formulations of the simulations and acoustic analysis are 
presented in the next section. This will be followed by 
analysis of results obtained for cold mixing layers of various 
Mach numbers. 

2. MATHEMATICAL AND NUMERICAL FORMU-
LATION 

2.1. Compressible Mixing Layers Simulations 

 Subsonic to supersonic planar mixing layers were 
simulated using the Large Eddy Simulation (LES) approach. 
In this approach the flow large scale structures are simulated 
while the small scale structures are modelled. LES has been 
shown to be capable of producing the flow large scale 
structures accurately [15], which is of interest in this study. 
The Favre filtered compressible Navier-Stokes (NS) 
equations were simulated in rectangular co-ordinates: 
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where  is the density, ui is the velocity component in the i 
direction, p is the pressure and E is the total energy. The 
conventional over bars and tildes noting the flow properties 
as spatially filtered were omitted from Equs. (1) to (3) for 
simplicity. ij is the molecular viscosity calculated by 
assuming Newtonian fluid and using Sutherland’s formula 
connecting the molecular viscosity coefficient with the 
temperature variation [15, 16]. ij is the LES sub-grid scale 
tensor representing the effect of the small scale flow 
structures on the simulated large scale structures, which was 
calculated using the dynamic Smagorinsky model [15]. q is 
the heat flux vector calculated using Fourier’s law. The sub-
grid terms in the energy equation (3) were omitted because 
they have a very small effect on the flow momentum terms 
[15], which are the terms responsible for the mixing noise 
emitted by cold layers as investigated in this study. The NS 
equations (1) to (3) are supplemented by assuming perfect 
gas and using the equation of state. 

 The mixing layer was constructed by specifying two 
opposing streams with the same speed and ambient 
properties of density and temperature. The convective Mach 
number of the mixing layer MC is defined as 



Propagation of Sound Emitted from High Speed Mixing Layers The Open Acoustics Journal, 2010, Volume 3    13 

MC =
U1 U2

c01 + c02
,            (4) 

where U1 and U2 are the upper and lower streams ambient 
velocity respectively, and c01 and c02 are the upper and lower 
streams ambient speed of sound respectively [15, 16]. Thus 
in our case MC is simply the ambient Mach number of the 
streams. The velocity, density and temperature fields were 
all normalized by the corresponding ambient values before 
solving the NS equations. The spatial dimensions were 
normalized so that one unit length was equal to twice the 
initial mean momentum thickness , where the initial mean 
streamwise velocity component was prescribed using a 
hyperbolic-tangent profile [14-16]. The other initial mean 
velocity components were taken as zero and the initial mean 
density and temperature fields were taken as uniform having 
the ambient values. Thus the mixing layers started from an 
isothermal condition. 

 Periodic boundary conditions were used in the 
streamwise and spanwise directions, thus the mean 
momentum thickness  was defined as 

1
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where Ly is the stream-normal length of the computational 
box and the operator < > denotes spatial averaging in the 
streamwise and spanwise directions. Non-reflecting 
boundary conditions were used at the stream-normal 
direction, i.e. at y = ± Ly/2 [17]. Uniform grid was taken at 
the streamwise and spanwise directions. A stretched grid in 
the stream-normal direction was taken as in Refs. [12, 15], 
giving a ratio of about 8 to 1 between the grid spacing at the 
edges of the computational box to that at its centre. 

 Collocated grid and finite difference schemes were used 
to discretize the NS equations (1) to (3). Because of the 
possibility of shocklets inside the mixing layer [15], the 
Steger-Warming flux splitting scheme was used for the 
convection terms [18] along with the 5th order Weighted 
Essentially Non-Oscillatory (WENO) differentiation scheme 
of Jiang & Shu [19]. A fourth order central scheme was used 
for the diffusion terms. The NS equations were marched in 
time using a compact 3rd order Runge-Kutta scheme. To start 
the transition to turbulence, initial 3D disturbances of 
oblique waves and imposed random noise were used. 
Maximum overall disturbance amplitude of 0.1 was used at 
the centre of the mixing layer, while that amplitude decayed 
exponentially towards the streamwise edges of the 
computational domain, as in Fortuné et al. [14]. 

2.2. Burgers Equation Solution 

 The density fluctuations denoted as ´ were recorded 
near the top of the LES computational domain and fed as the 
boundary condition into a generalized viscous non-linear 
Burger equation to investigate NL propagation. The Burgers 
equation was commonly used as a tool to investigate non-
linear propagation as described in the Introduction section. 
That equation was taken as 
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where r is the propagation distance and m = (0, 0.5, 1) for 
planar, cylindrical and spherical spreading, respectively [20]. 
The non-linearity and diffusion terms are expressed in Eq. 
(6) using spatial derivatives in order to fit for the employed 
numerical scheme. The more commonly version used in 
acoustics expresses these terms using temporal derivatives. 
Both versions are equivalent when considering the 
approximations that led to the derivation and applicability of 
the Burgers equation [20]. 

 The non-linearity coefficient  was taken as (  + 1) /2 as 
appropriate for perfect gas [20], with  = 1.4 for air. If  = 0 
then Equation (6) will become fully linear and will be 
denoted as the linearised Burgers Equation. Usually, the 
linear propagation term (c0 ´)/ r is removed from Eq. (6) 
by replacing the time co-ordinate t with the retarded time co-
ordinate   t – r / c0 [20]. It was kept in this study in order 
to ease the comparison between linear and non-linear 
propagation as it will be shown later.  and μ are the shear 
kinematic and kinetic viscosity coefficients respectively, and 
μB represents the bulk viscosity. μB/μ is taken as 0.6 for air, 
approximating the effect of the relaxation process as purely 
dissipative, which is appropriate for the low frequency range 
[20]. The Prandtl number Pr was taken as 0.7. 

 A uniform grid and finite difference schemes were used 
to discretize Eq. (6). The LES density fluctuations were fed 
as the boundary condition at r = 0 as stated earlier and an 
inviscid non-reflecting boundary condition was used on the 
other edge of the grid at r = R. ´ was taken as zero at t = 0. 
The 5th order WENO scheme was used to approximate the 
propagation terms and a 4th order central scheme was used 
for the diffusion term. The equation was marched in time 
using a 2nd order compact Runge-Kutta scheme. 

 To test the Burgers equation solver a sine wave was fed 
as the boundary condition at r = 0. This should yield the 
Fubini solution in the near field for the inviscid planar 
Burgers equation [20, 21], expressed as 

' = 2 amp

Jn nr l( )
nr l
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l = 0c0

amp

, k =
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,           (8) 

and Jn is the Bessel function of the first kind. The above 
solution is valid for the pre-shock region of r < l and ´ 
becomes sin( t) at r = 0. A comparison between the Fubini 
solution and the numerical solution of the Burgers equation 
(Eq. 6) for m =  = 0 is shown in Fig (2). ( 0, c0) were taken 
as (1, 10) respectively and l as 100. Thus the non-linear 
propagation term c0 ´/(2 0) in Eq. (6) was less than 1% of 
the linear term c0 ´. Nevertheless, the numerical solution 
successfully produced the accumulative NL propagation 
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effects of wave steepening while preserving the wave 
amplitude and achieving a very good agreement with the 
Fubini solution. The grid resolution used for the numerical 
solution shown in Fig. (2) was about 30 points per wave 
length. Increasing the resolution to about 40 points per wave 
length removed completely the small differences in the wave 
troughs between the two solutions that can be seen in Fig. 
(2b). This type of resolution may be considered to be too 
high for multi-dimensional problems but is more than 
adequate for the current 1D problem of Eq. (6). 

 

Fig. (1). Schematic description of the mixing layer and emitted 
Mach waves. 

3. RESULTS 

 A mixing layer with a tanh streamwise velocity profile 
was initialized by an oblique disturbance with a random 
phase to enhance transition to turbulence. The Reynolds 
number based on the initial momentum thickness was set to 
500 and the convective Mach numbers values of 0.4, 0.8 and 
1.2 were considered. The computational domain size was 
taken as (Lx, Ly, Lz) = (20, 40, 20), (25, 40, 25) and (30, 40, 
30) for MC = 0.4, 0.8 and 1.2, respectively, where one spatial 
unit was equivalent to twice the size of the initial momentum 
thickness as used by Vreman et al. [16]. The computational 
grid size was taken as of (61, 241, 61), (88, 281, 88) and 
(101, 321, 101) points, respectively, so that the number of 
grid points increases with MC. This kind of resolution scales 
favourably with the grid resolution in Vreman [15] when 
considering Reynolds number scaling. 

 The time evolution of the mean momentum thickness  is 
shown in Fig. (3) for the various simulated mixing layers. 
All mixing layers initially show a mild increase in the 
momentum thickness as ambient fluid is entrained into the 
mixing layer. This is followed by a rapid increase in the 
momentum thickness marking the flow transition to 
turbulence. As expected, increasing the mixing layer’s Mach 
number delays the transition to turbulence and reduces the 
rate of the momentum thickness growth [15, 16]. A fully 
developed mixing layer will exhibit a linear growth of the 
momentum thickness with time. All mixing layers show a  
 

(a) 

 

(b) 

 

Fig. (2). Comparison between the numerical solution for the plane 
inviscid Burgers Equation (6) and the theoretical Fubini solution (7) 
for the instantaneous density fluctuations of a monochromic wave 
starting as a sinusoidal wave at r = 0. 

nearly linear growth at later time stages in Fig. (3), although 
none shows exactly a linear growth because of the finite size 
of the computational domain. The growth rates were 
calculated as (0.07, 0.025, 0.02) for MC = (0.4, 0.8, 1.2), 
while Vreman et al.’s [16] DNS-based model produced the 
growth rates of (0.065, 0.035, 0.025) and a linear-stability 
based model produced the growth rates of (0.06, 0.033, 
0.02), respectively. Thus a fair to good agreement has been 
achieved where the highest difference is for the MC = 0.8 
case. However, as it will be shown next, all mixing layers 
achieved flow development close to a self-similar state. 

 The mean streamwise velocity profile is shown in Fig. 
(4) for the supersonic mixing layer of MC = 1.2. An  
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Fig. (3). The time evolution of the mean momentum thickness for 
the simulated mixing layers. 

empirical curve of a fully developed mixing layer [22] is also 
shown, demonstrating that up to late time stages the 
simulation managed to preserve a velocity profile close to 
the empirical one. Similar behaviour was found with the 
other mixing layers. The preservation of an almost fully 
developed mixing layer is further illustrated in Fig. (5) 
showing the stream-normal variation of the mean turbulence 
intensity defined as < vivi>

0.5, where vi = ui - < ui> / < > is 
the velocity fluctuation. The profiles coincide well for all 
mixing layers when the stream-normal direction is 
normalized by the mean momentum thickness. The levels of 
the turbulence intensity also scale favorably with the levels 
reported by Vreman [15], demonstrating that a self-similar 
state was reached. 

 

Fig. (4). Mean streamwise velocity profiles for the supersonic 
mixing layer of MC =1.2, where the empirical curve was taken from 
Abramovich [22].  

 

 

(a) 

 

(b) 

 

(c) 

 

Fig. (5). The stream-normal variation of the mean turbulent kinetic 
energy for the mixing layers of (a) MC = 0.4, (b) MC = 0.8 and (c) 
MC = 1.2. 
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 Typical instantaneous density contours are shown in 
Figs. (6, 7) for the various mixing layers in the mid-plane of 
the computational box in the spanwise direction. It can be 
seen that as MC increases higher density fluctuations appear 
outside the mixing layer as expected. However, while the 
low speed mixing layer of MC=0.4 shows no inclined wavy 
structures outside the shear zone, the contours of the 
supersonic mixing layer of MC=1.2 show such structures as 
indicated in Fig. (7). Furthermore these structures which we 
identified as Mach waves can show steepening in the 
propagation direction as seen in Fig. (7b). This is a sign of a 
non-linear propagation effect. The propagation angle  (see 
Fig. 1) is about 450, which gives a Mach number MS of about 
1.4 for the source of the wave, when taking MS = 1/cos . 
Considering that the lower stream moves at a Mach number 
of 2.4 (twice of MC) as relative to the upper stream, MS = 1.4 
gives a ratio of about 0.6 when normalized by 2.4, which is 
well inside the range of 0.5 to 0.7 for the expected speed of 
sound sources in a jet [1-3]. On the other hand the high 
subsonic mixing layer of MC = 0.8 shows a weak inclined 
structure in the lower stream and a vertical one at the upper 
stream as indicated in Fig. (6b). Since most of the sound 
emission in this mixing layer is generated by subsonic flow 
there can still be some cancellation between the forward and 
aft sound emissions caused by the periodic streamwise 
boundary conditions [12]. This will result in wave structures 
tending to be vertical. Nevertheless some of the sound source 
still convects supersonically as relative to the upper or lower 
stream, causing a mild inclined wave structure as seen in Fig. 
(6b). 

 The density fluctuations recorded at several points in the 
upper stream of the mixing layers were propagated using the 
Burgers equation (6). Typical time histories of the sound 
wave propagation obtained for the inviscid planar case are 
shown in Figs. (8, 9). Results from the linearised form (  = 
0) are also included in Fig. (9). Both subsonic mixing layers 
of MC = 0.4 and 0.8 show linear propagation characterized 
by parallel trough and crests lines although the Burgers 
equation (6) that was considered accounted for non-linear 
propagation. On the other hand the sound propagation for the 
supersonic mixing layer shows non-linear characteristics of 
crests moving faster then troughs, leading to merger and 
cancellation as seen for the trough-crest pairs starting at 
about times 30 and 180. This is particular evident when 
comparing with the solution of the linearised Burgers 
equation (  = 0) shown in Fig. (9b). Further evidence to the 
higher speeds of the crests is seen for the crests starting 
around time 150. 

 To assess the effect of geometrical spreading, the 
propagation calculations were repeated for the inviscid 
cylindrical Burgers equation. The results are shown in Fig. 
(10). The cylindrical spreading can be observed as a 
dominant feature affecting the propagation pattern by 
reducing the wave amplitude to a similar level whether linear 
or non-linear propagation is assumed. However, non-linear 
effects are still evident as demonstrated by the mergers of the 
trough-crest pairs indicated in Fig. (10a). To better assess the  
 

(a) 

 

(b) 

 

Fig. (6). Typical instantaneous density contours at the mid spanwise 
plane (z = 0) for the mixing layers of (a) MC = 0.4 and time 120; (b) 
MC=0.8 and time 200. 
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(a) 

 

(b) 

 

Fig. (7). Typical instantaneous contour levels at the mid spanwise 
plane (z = 0) for the supersonic mixing layer of MC = 1.2 and time 
225, and for (a) the entire mid-plane, and (b) a zoomed view on 
Mach waves. 

effects of non-linearity and geometrical spreading the time 
histories of the density fluctuations were plotted in Fig. (11) 
for the propagation distance 40, i.e. eighty times the initial 
momentum thickness of the mixing layer. In the case of 
planar propagation, crests or troughs with an amplitude as 
little as 0.05 already show non-linear behaviour by moving 
faster or slower, respectively. More striking is the damping 
of the trough-crest pair around time 230. Although the pair 
had amplitudes originally similar to those of other crests and 
troughs, the non-linear effect is much more evident. 

(a) 

 
(b) 

 

Fig. (8). The propagation of the density fluctuations as calculated 
using the inviscid plane non-linear Burgers Equation (6) for the 
mixing layers of (a) MC = 0.4 and (b) MC = 0.8. The density 
fluctuations at the zero propagation distance were taken from the 
LES at the computational domain point of (x, y, z) = (-2.5, 12, 0). 
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(a) 

 

(b) 

 

Fig. (9). The propagation of the density fluctuations as calculated 
using the inviscid plane (a) Burgers Equation (6) and (b) its 
linearised form with  = 0, for the mixing layer of MC = 1.2. The 
rest of the conditions are as in Fig. (8). 

 

 

 

(a) 

 

(b) 

 

Fig. (10). The propagation of the density fluctuations as calculated 
using the inviscid cylindrical (a) Burgers Equation (6) and (b) its 
linearised form with  = 0, for the mixing layer of MC = 1.2. The 
rest of the conditions are as in Fig. (8). 
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(a) 

 

(b) 

 

Fig. (11). Time history of the density fluctuations at a propagation 
distance of 40 assuming (a) planar propagation and (b) cylindrical 
propagation. 

 The non-linear effect is clearly overtaken by the damping 
caused by the cylindrical spreading seen in Fig. (11b), but 
still a significant non-linear effect is seen with the sharp 
trough-crest pair around time 230 as in planar propagation. 
This indicates that the sharp slope of the density fluctuation 
is at least as important as the amplitude in kicking non-linear 
propagation. Thus as it can be seen from both Fig. (11a, b), 

while the general pattern of the sound propagation can be 
predicted with some accuracy assuming linear propagation as 
suggested by Freund et al. [8], there are some events that can 
be completely miscalculated as the sharp trough-crest pair 
around time 230. On the other hand adding viscosity as 
modelled in Eq. (6) and using the Reynolds number of the 
simulated mixing layers had very little effect on the density 
fluctuations as can be seen in Fig. (11). 

4. SUMMARY 

 Non-linear propagation of mixing noise was investigated 
by simulating low to high speed mixing layers using the 
Large Eddy Simulation (LES) approach and propagating the 
emitted sound using the Burgers equation. Time-developing 
cold mixing layers of convective Mach number MC = 0.4, 0.8 
and 1.2 were considered. Transition to turbulence and flow 
development close to self-similar state were observed. 
Generally good qualitative agreement was achieved with 
available results for the mixing layers’ flow development. 
The Burgers equation was solved using a high order flux 
splitting scheme achieving a very good agreement with the 
Fubini analytical solution, pointing to the possibility of using 
such schemes for non-linear acoustic computations. 

 Instantaneous density fluctuations captured from the LES 
computations showed the generation of Mach waves by the 
supersonic mixing layer and steepening of the waves, 
pointing to non-linear propagation effects. No such wave 
formations were found for the subsonic mixing layers. 
Further propagation calculations using the Burgers equation 
showed non-linear propagation effects for the supersonic 
mixing layer, particularly when planar wave propagation was 
assumed. This result supports the hypothesis of Lighthill [1] 
of non-linear propagation affecting the near field region of 
Mach waves. It was seen that the initial steepening of the 
sound wave was as least as important as the wave amplitude 
in kicking non-linear effects. These findings showed that 
although the general pattern of the wave propagation can be 
predicted assuming linear acoustics, there are some steep 
peaks and troughs that will be significantly miscalculated. 
On the other hand viscosity effects were found to have little 
effect for propagation distances of up to hundred times of the 
initial momentum thickness of the mixing layer. 

 The subsonic or supersonic character of the sound source 
Mach number and the initial slope of the emitted sound wave 
were found to be crucial in determining non-linear 
propagation effects in low frequency mixing noise. Further 
planned studies include computations and performing 
accompanying experiments of spatially-evolving mixing 
layers. It is hoped that they will offer better mapping of the 
near sound field, allowing the identification of any transition 
from a planar wave form to a geometrically spreading wave 
and a better statistical analysis of non-linear propagation as it 
affects for example the frequency spectrum. 
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