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Abstract: Problems such as natural ventilation, pollutant dispersion, changes in wind environments, and urban heat is-

lands are gaining increasing prominence in both public concern and research. In response, urban microclimate modelling 

researchers are continually striving to develop new strategies to rapidly and inexpensively generate more accurate results. 

Numerical modelling is a common way to address these concerns. However, to generate realistic results requires signifi-

cant investment in model creation, especially with respect to the detail to which a model is populated. This paper provides 

an overview about this and other recent trends within the research community by considering nearly 100 recent papers. 

Findings show that despite more computational capacity there has not been a major trend towards increasing the model 

complexity to obtain more realistic results.  
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INTRODUCTION 

Due to continuing changes in land-use practices, rapid 
urbanization, and heightened awareness about environmental 
justice, concerns about environmental modelling continue to 
rise. For urban areas the following microclimates topics are 
of particular interest: 

• Wind flow alteration caused by construction or demo-
lition in the physical environment 

• Air quality deterioration affiliated with contaminant 
transport or pollutant dispersion 

• Heat distribution changes related to modifications in 
land usage 

To control wind flow, mitigate air quality deterioration, 
and limit unintentional temperature changes, several strate-
gies are being undertaken. These include promoting vegeta-
tion growth and natural ventilation, reducing traffic to de-
crease dispersion of ultrafine particles (UFPs), and minimiz-
ing energy consumption. To predict the effectiveness of such 
changes depends upon the quality of available tools to model 
these phenomena. Such tools require the correct governing 
equations and boundary conditions and implementation of 
appropriate numerical algorithms. Arguably they also require 
a relatively high level of detail of the buildings and the sur-
rounding environment. Yet, anecdotal evidence would indi-
cate that these factors are not regularly being considered. 
This paper investigates the current state of the art in compu-
tational urban microclimate models to try to quantify the  
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level of detail being portrayed and to describe a possible new 
mechanism for populating urban computational models for 
microclimate modelling. 

SCOPE AND METHODOLOGY 

To investigate the current extent to which buildings and 
their surrounding environments are being modelling numeri-
cally, this paper considers three topics: Wind Environment 
(WE), Air Quality (AQ), and Urban Heat Island (UHI). This 
is done through the analysis of the work of 223 authors from 
22 countries through 56 internationally, peer-reviewed jour-
nal papers published from 2010 to 2013 [1-56]. Amongst 
these were 19 UHI papers exploring vegetation, building 
energy simulation, urban street characteristics, urban phys-
ics, thermal modelling, perpetual fidelity, and thermal com-
fort [1-19]. An additional 18 papers investigated AQ [20-37], 
with respect to natural ventilation, dispersion of traffic in-
duced UFPs, contaminant transport, climate change, health 
in cities, ventilation strategies, micro-environments, and 
aerosol dynamics. Finally, there were 19 WE papers [38-56] 
considering the outdoor wind environment, wind flow, cross 
ventilation, kinetic energy, pollutant dispersion, urban mor-
phology, surface roughness, and vegetation. These 56 papers 
were considered with respect to 40 earlier papers (published 
from 2005 to 2010) [57-96] that were previously considered 
by Laefer and Anwar [97] (Fig. 1). 

The percentage of papers that employed numerical mod-
elling (as opposed to use of wind tunnels or field measure-
ments) was similar in each study (85%). In the current study, 
numerical modelling was used in 94% of AQ papers, 89% of 
WE papers, and 72% of UHI papers. So despite arguably 
ever improving computing capabilities (e.g. being more user-
friendly, reliable, and economical, as well as having en-
hanced visualization and virtual modelling options), numeri-
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cal modelling has not fully displaced physical or analytical 
modelling. To investigate these and other trends, this paper 
considers the following topics: the physical representation, 
the computational representation (when applicable), and the 
software and algorithms in use. 

PHYSICAL REPRESENTATION 

The physical representation involves the model’s cover-
age area, scale, aspect ratio, quantity of included buildings, 
use of an actual or hypothetical site, and dimension [three-
dimensional (3D) versus two-dimensional (2D)], as well as 
feature set selection for model inclusion. 

The study area varied from the micro-scale (0.1-10 km
2
) 

to the macro-scale (>10,0000 km
2
) (Fig. 2). One change 

from the early work is that most current UHI investigations 

consider the effects of urban areas on nearby suburban areas; 
previously the geographic extent was not considerd explic-
itly in UHI modelling. 

In the 2010 to 2013 papers, the study area composition 
ranged from a single building to an entire town. While ex-
amples of multi-building inclusion continued, (Fig. 3) de-
picts a clear trend to include fewer buildings (all 2012 papers 
included only a single building). What did not change sig-
nificantly was the use of real locations, as opposed to hypo-
thetical ones (64% in the new research papers, as opposed to 
60% in papers from 2005 to 2010). The aspect ratio (build-
ing height versus street width) varied from 0.125 [46] to 1.25 
[34]. While the scale varied from 1:1 to 1:5000, the mean 
scale was 777.87 (with a standard deviation of 1718.16). 
This was slightly smaller than the 1:1000 in the earlier group 
of papers [97].  

 

Fig. (1). Number of papers considered per year and papers per category in each study. 

 

 

(a) Previous study      (b) Current study 

Fig. (2). Extent of coverage. 
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Fig. (4) depicts a growing trend in using a 3D domain 
versus a 2D one (86% vs. 69%). Arguably a 3D domain gen-
erates more accurate results, despite being computationally 
more complex and more expensive to populate, with respect 
to depicting the geometry of the environment. The trend may 
also be indicative of the increasing availability of 3D remote 
sensing data with better vertical resolution [98], even though 
such datasets are only collections of randomly distributed 3D 
points and do not explicitly contain topological, shape, or 
size information of the geographical features.  

A topic of high interest is the level of detailed included in 
the models, as that level can impact the output quality, as 
shown by Li [48], who investigated medium rise buildings 
with and without balconies for predicting mean wind pres-
sure distribution on windward and leeward surfaces. While 
the inclusion of such elements has grown significantly (from 
0.5% to 10.7%), the overall level remains modest, and many 

features of the built environment such as footpaths, curbs, 
and steps have never been considered (Table 1). A similar 
increased level of inclusion occurred for vegetation (from 
1.2% to 14.8%) or building disposition (only [22]), despite 
natural ventilation being one of the most fundamental way to 
reduce building energy usage [4, 34]. Another advance is the 
increased inclusion of vehicle emissions (0.2% vs. 8.51%) to 
better predict turbulent transport phenomena of air-borne 
pollutants in built-up areas. So while the overall trends are to 
increase the realism in the modelling, the adoption levels 
remain extremely low. 

THE COMPUTATIONAL REPRESENTATION 

Irrespective of specific content choices, the computa-
tional representation of a micro-climate model involves sig-
nificant grid-related information (e.g. geometric shape and 

 

Fig. (3). Number of buildings per study. 

 

 

Fig. (4). Selected dimension. 
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types, dimensionality, generation technique and population 
strategy, as well as convergence criteria). 

A grid is the arrangement of discrete points/elements 
over the flow field. Grid generation is the determination of 
the proper grid for the flow around a given geometric shape. 
Grids are considered either structured (Fig. 5a) or unstruc-
tured (Fig. 5b). Structured grids are generally composed of a 
regular arrangement of quadrilateral (2D) or hexahedral (3D) 
elements, while unstructured grids often use triangular (2D) 
or tetrahedral (3D) elements and can be created automati-
cally for almost any geometry by means of tessellation [99]. 
While there was no dominance in micro-climate modelling 
for structured versus unstructured grids, a strong preference 
(almost 3 to 1) was apparent for the use of 3D elements over 
2D elements, despite the related need for more complex cal-
culations for the 3D elements (Table 2). 

Generally, one of two different grid generation tech-
niques is applied: (1) the body-fitted or conforming method, 

or (2) the immersed-boundary method. The most common is 
the body-fitted method, where the external mesh face con-
forms to the surfaces [i.e. the external mesh face matches the 
surface (body surface and/or external surface) (Fig. 6a)]. 
Usually, a body conforming grid is used for computing the 
flow around an arbitrary body. This approach requires coor-
dinate transformations and/or complex grid generation. If the 
body-fitted method is applied to moving bodies, a new mesh 
must be generated for each time step, which requires signifi-
cant computing time.  

An alternative is the immersed body method (also known 
as the embedded mesh Cartesian method) (Fig. 6b). The 
main idea is to place bodies inside the flow region within a 
large mesh. In this method, the external mesh surface does 
not fully match the body surface. Hence, the mesh does not 
need to move. The distinguishing feature of the immersed 
boundary method is that the entire simulation can be con-
ducted on a Cartesian grid. In such cases, the solid boundary  
 

Table 1. Details of modelled elements (shown as a percentage of the papers considered). 

Modelled Elements 40 Papers (2005-2010) 56 Papers (2010-2013) 

Vegetation 1.2% 14.8% 

Signage NIM NIM 

Street Furniture NIM NIM 

Steps NIM NIM 

Curbs NIM NIM 

Footpath 0.5% 2.1% 

Texture 1% NIM 

Setbacks 0.2% 6.3% 

Balconies NIM 2.1% 

Other Decorative Elements 0.5% 10.7% 

Windows 0.2% 2.1% 

Vehicles Emissions 0.2% 8.51% 

NIM*- Not included in model  

 

  

(a) Structured     (b) Unstructured 

Fig. (5). Geometry of elements. 
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cuts through the grid. Because the grid does not conform to 
the solid boundary, imposing boundary conditions requires 
modifying the governing equations in the vicinity of the 
boundary. This method applies to the treatment of problems 
with (1) dirty geometry, (2) moving bodies with thin gaps, 
and (3) those with laminar flow [99]. While the immersed-
boundary method has the advantage of being simple, thereby 
minimizing CPU and memory requirements without com-
promising the accuracy, it still exhibits many shortcomings, 
as identified in references [99-101]. 

• Approximations occur at boundaries. 

• Near the boundaries, the embedding boundary condi-
tions need to be applied, which may reduce the local 
order of approximation for the partial differential 
equations. 

• Mesh adaptivity is essential for most cases. 

• Considerable time is required to build the proper 
boundary conditions for elements close to the surface 
or inside bodies for moving boundaries. 

• Obtaining the information required to transfer forces 
back to the structural surface can be time consuming 
for fluid–structure interaction problems. 

Irrespective of element geometry, element type, or grid 
generation type, several user-defined inputs are needed. One 
is the mesh density. The number of grids required for a mesh 
depends upon the complexity of the object. The inclusion of 
more grids generates more accurate results but adversely 
increases the computer runtime. In the papers considered, 
grid population varied from 1.00E+05 to +09, without any 
discernible trends between the data sets (Fig. 7). 

Another user-defined parameter relates to convergence. 
The convergence level can control the processing duration. 
Higher values may decrease runtimes but may lead to possi-
ble instabilities. Conversely, lower values may further in-
crease stability at the expense of longer runtimes. Numerical 
methods used to solve the equations for fluid flow and heat 
transfer most often employ multiple iterations, thus requiring 
convergence criteria. In many cases, iterative methods are 
supplemented with relaxation techniques. For example, over-
relaxation is often used to accelerate the convergence of 
pressure-velocity iteration methods, which are needed to 
satisfy an incompressible flow condition. Under-relaxation is 
sometimes used to achieve numerically stable results when 
all the flow equations are implicitly coupled. Selecting 
proper relaxation and convergence criteria can be difficult. 
The convergence criteria depends on the specifics of the 

Table 2. Selection of numerical elements used in studies. 

Element Type Freq. of Usage for Group 1 Papers 2005-2010 Freq. of Usage for Group 2 Papers 2010-2013 Dimension 

Hexahedral  3 6 3D 

Tetrahedral 2 5 3D 

Prismatic  1 3 3D 

Irregular  2 0 3D 

Triangular  3 1 2D 

Quadrilateral 1 0 2D 

Rectangular  1 2 2D 

Unspecified or non-applicable 27 39  

 

  

(a) Body-fitted grid     (b) Immersed boundary grid 

Fig. (6). Grid generation techniques. 
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problem being solved, which may change during the evalua-
tion of a problem. There are no universal guidelines for se-
lecting criteria because they depend not only on the physical 
processes but also on the detail of the numerical formulation. 
Across the 96 papers, the convergence criterion varied from 
IE-4 to IE-7, thereby showing no discernible trends. 

MODEL AND SOFTWARE SELECTION 

The final topic area for consideration in this paper relates 
to model and software selection, which depends upon the  
 

problem’s complexity level, nature, and required accuracy of 
the results, as well as the project’s resources. As shown in 
(Fig. 8), the Reynolds Averaged Navier-Stokes (RANS) ap-
proach forms the basis of a large number of the implemented 
models. RANS can address all scales of turbulence, is con-
sidered easy to implement, and is computationally inexpen-
sive. Thus, its popularity persists despite its poor perform-
ance in cases of large adverse pressure gradients and its re-
striction to usage in only fully developed turbulent and non-
separated flows [102]. The next most popular choice is the 
large eddy simulation method (LES). LES is a filtered  
 

 

Fig. (7). Number of grids employed per study. 

 

 

Fig. (8). Convergence criterion. 
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version of the Navier-Stokes Equations, along with another 
equation to represent small-scale turbulence. Although more 
computationally expensive, LES produces more accurate and 
reliable results, because it resolves the turbulent mixing 
process in the flow field [53]. Over the past three years, LES 
has gained in popularity, while usage of the renormalized 
and modified k-  models has lessened across the entire study 
set (Fig. 9). The vast majority of specific models were only 
used once indicating a continued amount of significant de-
velopment in this area. 

Amongst the available commercial software, FLUENT 
dominates usage (Fig. 10) and is the CFD solver of choice 
for complex flows ranging from incompressible (low sub-
sonic) and mildly compressible (transonic) ones to highly 
compressible (supersonic and hypersonic) flows. By provid-
ing multiple choices for solver options. FLUENT is applica-
ble to a wide range of engineering problems both laminar 
and turbulent, for various heat transfer modes, chemical re-
actions, and multi-phase flows. Notably, there is a growing  
 

trend to use ENVI-met: a 3D, numerical microclimate model 
mainly for air quality that uses a Eulerian approach for cal-
culation of mass, momentum, and an energy budget [34]. 
ENVI-met is based on a RANS equations, with a non-
hydrostatic, micro-scale, obstacle-resolving model and ad-
vanced parameterizations for simulation of surface-plant-air 
interactions in urban environments [103]. ENVI-met pro-
vides both spatial resolution (0.5-10 m) and temporal varia-
tion (finest 10 s resolution) for an urban boundary layer cli-
mate. Additionally, ENVI-met has features not commonly 
available in other CFD dispersion codes (e.g. a detailed mi-
croclimate module and a vegetation module). The required 
input includes meteorological data, emissions, and domain 
characteristics [32]. 

NEW DEVELOPMENTS 

Two other new developments were noted that may have a 
large impact on future modelling. The first was the usage of  
 

 

Fig. (9). Implemented models ( *denotes a RANS-based model). 

 

 

Fig. (10). Selected software. 
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Comprehensive Turbulent Aerosol dynamics and Gas chem-
istry (CTAG), also called CFD-Vehicle Induced Turbulence 
(VIT) or CFD-Road Induced Turbulence (RIT). CTAG is a 
computational fluid dynamics based, turbulent-reaction, flow 
model to estimate the spatial and temporal impacts of multi-
ple air pollutants from traffic-related emissions for people 
living near major roads. The approach explicitly couples the 
major turbulent mixing processes VIT/RIT and atmospheric 
boundary layer turbulence) with gas-phase chemistry and 
aerosol dynamics. Aerosol dynamic processes such as nu-
cleation, coagulation, condensation, and evaporation are 
coupled with turbulent mixing to govern the evolution of 
exhaust particles. Gas phase chemical reactions also couple 
with turbulent mixing [36]. A novel multi-scale structure is 
created to advance the capability of simulating the evolution 
of UFP's from vehicular tailpipes to near road environment. 
A multiple scale is implemented in the CTAG model to 
characterize the micro-environmental air quality near high-
ways. The authors of reference [35] note that CTAG is still 
computationally expensive compared to parameterized dis-
persion models, although specific figures were not provided. 

The second trend is perceptual fidelity, the idea of intro-
ducing sound to reproduce the physical stimuli in microcli-
matic and multisensory urban environments. Arguably, the 
main focus to date on visual aspects restricts understanding, 
since multisensory ambiances are significant [102, 104]. 
Namely, the concept of sonic effect describes the interaction 
between (1) the physical sound environment, (2) the sound 
milieu of a socio-cultural community, and (3) the “internal 
soundscape” of each individual.  

DISCUSSION 

While more CFD models are including a greater level of 
detail, there is also a trend to include less of the surrounding 
structures. One possible explanation is that the extra effort 
being invested in representing the details of the main struc-
ture is consuming resources that are not available for the 
creation of nearby geometries. If this is the case, one possi-
ble solution is the use of aerial laser scanning or other re-
mote sensing technology to represent some or all of the sur-
rounding area. There are however several challenges to this.  
 

While alternative flight paths with multiple overlaps, such as 
those proposed by Hinks et al. [98] can greatly improve the 
vertical resolution of data capture (Fig. 11a vs. 11b), and 
direct conversion methods are available to transform the 
points into an appropriate solid model [105], approaches for 
segmentation (Fig. 12) and automated feature identification 
(two required tasks that provide the path between the data 
capture and the computational model) are not sufficiently 
robust at a city-scale. Consequently the resulting geometries 
will not be very accurate without significant manual inter-
vention. However, given the current trend to excluding 
nearby built elements can be offset by the inclusion of these 
less than perfect automated models.  

CONCLUSION 

In this survey of nearly 100 micro-climate modelling pa-
pers over the past eight years several trends were noted: 

1. The inclusion of fewer buildings (and often only one 
building), but with a higher level of detail (especially 
vegetation and vehicle emissions), at a 25% smaller 
scale, and with a greater propensity of using more ac-
tual sites (as opposed to hypothetical locations). 

2. A greater usage of three-dimensional aspects (as op-
posed to two-dimensional ones) in both the domain 
and in the choice of elements. 

3. A growing trend for the Large Eddy Simulation 
method and ENVI-met software, despite a continuing 
dominance of RANS-based methods and the software 
Fluent. 

While the latter two trends represent clear advances in 
the field, the first is not definitively so and raises the ques-
tion as to why the higher detailing of buildings seems to be 
in parallel with the exclusion of surrounding structures. Cer-
tainly, the justification for omitting surrounding structures is 
regularly excluded from recently published literature. What 
appears to be missing is a clear set of guidelines for research 
as to the extent of surrounding obstacles that should be in-
cluded for the adequate modelling of the three cases of wind, 
urban heat, and pollution dispersion. 

 

 

  

a) Single pass aerial laser scan b) Multi-pass aerial laser scan 

Fig. (11). Example of current vertical façade data density from aerial laser scanning. 
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